GEOLOGICAL AND GEOCHEMICAL
REPORT ON
NIKA GROUP OF MINERAL CLAIMS
YA7761 - YA77768
091833
MAYO MINING DISTRICT

N.T.S MAP 106 C-4
LAT: 64° 12'N
LONG: 133° 50'W

by
J.H. Montgomery, Ph.D., P.Eng.

August 10, 1986
This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mist Act and is allowed as reproduction work in the amount of $1,600.00.

Regional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.
TABLE OF CONTENTS

1.0 SUMMARY AND CONCLUSIONS 1
2.0 INTRODUCTION 2
3.0 LOCATION AND ACCESS 3
4.0 WORK DONE 5
5.0 GEOLOGY 6
6.0 GEOCHEMISTRY 8
7.0 COST OF WORK DONE 10
8.0 RECOMMENDATIONS 11

FIGURES

3-1 Location Map and Claim Map 4
5-1 Geological Plan 7
6-1 Geochemical Sample Sites 9

APPENDIX

Assay Results 12
1.0 SUMMARY AND CONCLUSIONS

The NIKA GROUP of mineral claims is located on East Rakla River in the Mt. Mervyn area. The group consists of eight claims in the Mayo Mining District of Yukon Territory.

The property is presently accessible by helicopter only with the nearest airport bases being at Mayo, Y.T., a distance of about 112 kilometers (70 miles) west and Rakla River Strip which lies 20 kilometers east (12 miles).

The work done on the property consisted of general prospecting, and detailed geological mapping and sampling of a selected mineralized area.

The mapping showed the presence of a bedded barite deposit with minor silver and vanadium rock geochemical anomalous values.

Additional work is recommended to prospect for extensions along strike with possible base metal affiliations.
2.0 INTRODUCTION

The NIKA GROUP was staked during August, 1985 and preliminary geological and geochemical work done on it.

Details of the work done and costs incurred are contained in the following sections.

Further work is recommended.
3.0 LOCATION AND ACCESS

The Nika Group of claims is located on East Rakla River, about 112 kilometers (70 miles) east of Mayo, Yukon Territory. N.T.S. Map Reference: 106 C-4: Latitude - 64° 12'N; Longitude - 133° 50'W.

The property is located near the valley bottom at an elevation of 920 meters (3000 feet) in a lightly-wooded area containing mostly spruce and buck brush. See Figure 3-1.

The property is presently accessible only by helicopter possibly from Mayo, Y.T. or from Rakla River Strip if others are working in the area.

The best place for a base camp is on the flat area north of the claims near Rakla River.
FIGURE 3-1

NIKA CLAIM GROUP

RAKLA PROJECT

LOCATION AND CLAIM MAP

SCALE 1: 31680

0 2640. 5280. 7320. FT.

D. O'NEILL AUGUST 1, 1986
4.0 WORK DONE

The work done during the period August 14 - 19 consisted of general prospecting over a large area and detailed geological mapping and rock geochemical sampling over a selected area. A total of 24 man-days were expended (including travel time). An additional day was required for report preparation.

Total cost for the program was $9955.55.

A total of 2 years assessment work is applied for each of the eight claims.

Details of costs incurred are included in Section 7.0.
5.0 GEOLOGY

The geology of parts of NIKA No. 1 and No. 2 were mapped on a scale of one inch to 100 ft. See Figure 5-1.

The map-area is underlain by a sedimentary sequence consisting of shale, barite and limestone. The sequence dips southerly for the most part at 15 to 66 degrees and strikes approximately east-west. Some of the bedded barite also dips 55 degrees north indicating that the beds are drastically folded.

The sedimentary sequence, if not overturned, appears to be barite-shale-limestone going up in section but, at least in part, shale is also interbedded with barite.

The shale is grey to black with in some instances small blebs of barite interbedded. It is very fissile and weathers easily to rounded piles of fine rubble.

The barite is thin-to medium bedded, and grey and white in color. Barite appears to be closely associated with the black shale in which small blebs may also occur.

A thick stratum of limestone overlies the shale and barite to the south of the grid. This rock is light grey to buff in color and is thickly-bedded to massive. It also appears to dip mainly to the south.
NIKA CLAIM GROUP
RAKLA PROJECT
GEOLOGICAL PLAN

FIGURE 5-1

NIKA 1

NIKA 2

SCALE 1: 1200

0 100. 200. 300. FT.

D. O’NEILL
AUGUST 1, 1986
6.0 GEOCHEMISTRY

A total of 16 rock samples were taken from the grid area and analyzed for Ag, Ba, Cd, Cu, Fe, Ni, Pb, V and Zn by I.C.P. methods. Locations of the samples are shown in Figure 6-1 and the Certificate of Analysis is in the Appendix.

All of the samples are anomalous in barite. It appears that some saturation point for the method (I.C.P.) was reached between 2000 and 8000 ppm because a large proportion of the samples were almost pure barite.

One sample of shale (8-18-G) is anomalous also in silver, cadmium, iron and vanadium.
FIGURE 6-1
NIKA CLAIM GROUP
RAKLA PROJECT
GEOCHEMICAL SAMPLE SITES

SCALE 1: 1200
8 100.
200.
300. FT.

D. O'NEILL AUGUST 1, 1986
7.0 COST OF WORK DONE

(a) PERSONNEL
1. D. O'Neill (Geologist) - 6 days @ 150 900.00
2. H. Grond (Geologist) - 6 days @ 150 900.00
3. N. Barr (Geologist) - 6 days @ 150 900.00
4. J. Montgomery (Geologist) - 6 days @ 150 900.00

(b) TRANSPORTATION
1. Air North (fixed wing & heli.) 2,303.60
2. Air Fares 1,308.00
3. Truck Rental 265.97

(c) FOOD/ACCOMMODATION 1,151.33

(d) GEOCHEMICAL ANALYSIS 136.00

(e) EQUIPMENT/SUPPLIES 290.65

(f) REPORT PREPARATION
 (incl. typing, repro. etc.) 900.00

TOTAL: $9,955.55
8.0 RECOMMENDATIONS

The NIKA property appears to be part of a typical sedex base metal-bedded barite deposit and, as such, should be further explored.

Respectfully submitted,

J.H. Montgomery, Ph.D., P.Eng.

August 10, 1986
Vancouver, BC
<table>
<thead>
<tr>
<th>Sample</th>
<th>Ag (ppm)</th>
<th>Ba (ppm)</th>
<th>Cd (ppm)</th>
<th>Co (ppm)</th>
<th>Cu (ppm)</th>
<th>Fe (ppm)</th>
<th>Ni (ppm)</th>
<th>Pb (ppm)</th>
<th>V (ppm)</th>
<th>Zn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-18-A</td>
<td>1.7</td>
<td>4521</td>
<td>2.0</td>
<td>7</td>
<td>740</td>
<td>1</td>
<td>9</td>
<td>4.3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8-18-B</td>
<td>1.1</td>
<td>5666</td>
<td>3.3</td>
<td>3</td>
<td>50</td>
<td>1</td>
<td>9</td>
<td>16.0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8-18-C</td>
<td>1.1</td>
<td>5716</td>
<td>1.4</td>
<td>4</td>
<td>740</td>
<td>3</td>
<td>8</td>
<td>11.6</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>8-18-D</td>
<td>1.7</td>
<td>4300</td>
<td>0.3</td>
<td>3</td>
<td>2820</td>
<td>2</td>
<td>9</td>
<td>22.0</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>8-18-E</td>
<td>6.6</td>
<td>3738</td>
<td>2.2</td>
<td>3</td>
<td>2130</td>
<td>2</td>
<td>14</td>
<td>65.9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8-18-F</td>
<td>2.2</td>
<td>5820</td>
<td>0.1</td>
<td>4</td>
<td>740</td>
<td>1</td>
<td>9</td>
<td>18.0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8-18-G</td>
<td>8744</td>
<td>1.1</td>
<td>12</td>
<td>12</td>
<td>32230</td>
<td>16</td>
<td>8</td>
<td>588.8</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>100WON</td>
<td>0.2</td>
<td>4978</td>
<td>0.3</td>
<td>4</td>
<td>2130</td>
<td>9</td>
<td>9</td>
<td>9.1</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>100WSON</td>
<td>0.3</td>
<td>5078</td>
<td>0.3</td>
<td>3</td>
<td>740</td>
<td>2</td>
<td>7</td>
<td>9.6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>150W100S</td>
<td>0.1</td>
<td>5475</td>
<td>0.4</td>
<td>3</td>
<td>50</td>
<td>1</td>
<td>8</td>
<td>12.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>200WSON</td>
<td>0.2</td>
<td>6148</td>
<td>0.4</td>
<td>4</td>
<td>400</td>
<td>3</td>
<td>8</td>
<td>3.7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>230WSON</td>
<td>0.3</td>
<td>4697</td>
<td>0.1</td>
<td>3</td>
<td>1090</td>
<td>1</td>
<td>8</td>
<td>21.3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>330W90S</td>
<td>0.2</td>
<td>6224</td>
<td>0.3</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>6</td>
<td>8.3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>600W400S</td>
<td>0.4</td>
<td>1780</td>
<td>0.3</td>
<td>5</td>
<td>9050</td>
<td>18</td>
<td>18</td>
<td>9.2</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>0WON</td>
<td>0.2</td>
<td>6104</td>
<td>0.4</td>
<td>4</td>
<td>1090</td>
<td>3</td>
<td>9</td>
<td>14.7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>0WSON</td>
<td>0.3</td>
<td>5821</td>
<td>0.2</td>
<td>4</td>
<td>400</td>
<td>2</td>
<td>8</td>
<td>14.7</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>