1985 PROGRAM
KOE CLAIMS
N.T.S. 115 J 9
62°38' 138°28'
WHITEHORSE MINING DIVISION
by
D. Arscott
for
Kerr Addison Mines Limited

Program
13 June - 12 July, 1985

Report:
11 December, 1985
This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mining Act and is allowed as representation work in the amount of $22,000.00.

20th Feb 1986

Regional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.
"There lies the rock, needs must we let it lie. We rack
our brains, yet know no more than asses."

Goethe, 1832.
KOE, July '85
Chris Baldys (foreground)
Main Zone Saddle
(background)

KOE - Trench 85-1
KOE. Note lineaments (NW Faulting)
Main Zone is saddle left centre.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERVIEW</td>
<td>1</td>
</tr>
<tr>
<td>LOCATION AND ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>LEGAL DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>TOPOGRAPHY AND VEGETATION</td>
<td>2</td>
</tr>
<tr>
<td>GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>HISTORY</td>
<td>5</td>
</tr>
<tr>
<td>1985 PROGRAM</td>
<td>5</td>
</tr>
<tr>
<td>ROCK SAMPLING</td>
<td>6</td>
</tr>
<tr>
<td>SOIL SAMPLING</td>
<td>9</td>
</tr>
<tr>
<td>GEOPHYSICS</td>
<td>10</td>
</tr>
<tr>
<td>TRENCHING</td>
<td>10</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>12</td>
</tr>
</tbody>
</table>

APPENDIX I

- GEOCHEMICAL PROCEDURES
- GEOPHYSICAL PROCEDURES
- COST STATEMENT
- QUALIFICATIONS STATEMENT
KOE ILLUSTRATIONS

FIGURE 1 Location
FIGURE 2 Claim Map
FIGURE 3 Compilation
FIGURE 4a Rock geochemistry - Sample Locations - 1:5000
FIGURE 4b Rock Geochemistry, Au,Ag - 1:5000
FIGURE 4c Rock Geochemistry, As,Sb - 1:5000
FIGURE 5a Soil Geochemistry, Au - 1:5000
FIGURE 5b Soil Geochemistry, Ag - 1:5000
FIGURE 5c Soil Geochemistry, As - 1:5000
FIGURE 5d Soil Geochemistry, Sb - 1:5000
FIGURE 6 VLF-EM Profiles - 1:5000
FIGURE 7a to 7e Trenches 85-1 to 85-5

TABLES

I Rock Sampling Page 7
II Trenching Summary Page 11
The KOE property, a derivative of the Yukon Regional program, consists of 44 claims located 290 km NW of Whitehorse. It is the site of epithermal Au-Ag mineralization adjacent to a subeconomic Cu-Mo porphyry system.

Major dip-slip faulting occurred contemporaneously with Tertiary volcanism and an abundance of geochemically anomalous, locally high grade float has been weathered from the surface traces of the major and related subsidiary faulting.

The target is a rhyolite-andesite hosted zone with an overall strike length of 750 m. Mapping, soil sampling and VLF-EM surveying indicate separate but coalescing fault strands. Float samples derived from these have yielded as much as 0.33 oz/t Au with 11.1 oz/t Ag, or in one extreme case, a select sample assaying 140 oz Ag. The enriched material is variably brecciated chalcedonic quartz with thin seams of arsenopyrite or pyrite. Since almost all the samples are float in talus or near talus, the thickness at the bedrock sources are unknown.

The most interesting segment of the target is not well exposed. It covers an area of 200m x 100m, including several projected fault strand intersections where the best mineralization - of vein or stockwork type - might be expected to occur.

A drilling program of 3-150m holes is recommended, at an all inclusive program cost of $90,000.
LOCATION AND ACCESS

The KOE Claims (Lat. 62°38'N, Long. 138°28'W; NTS 115 J/9) are located 125 kilometers northwest of Carmacks, Y.T. Normal access is by helicopter from a Trans North Air base in Carmacks. The nearest all-weather road is the Mt. Freegold road, the closest point of which is 85 km from the property.

LEGAL DESCRIPTION

The KOE property consists of KOE 1 to 44 (YA78417 to YA 78460), KOE 45 to 48 having been allowed to lapse in 1985. (Figure 2). The claims are owned by Kerr Addison Mines Ltd., Vancouver, B.C. The anniversary date is 12th December.

TOPOGRAPHY AND VEGETATION

The property lies within the Dawson Range of the western Yukon Plateau, an area not affected by continental glaciation. It covers an S-shaped ridge with elevations ranging from 1260 m ASL (4150') to 1760 m (5800'). The overall relief is 550 m.

The claims lie entirely above treeline with willow and alder bushes giving way to grasses and moss and then to unstable talus at higher elevations.

One result of the relief is a higher precipitation than at other locales in the Dawson Range. Conditions during the 1985 program were unusually cool and wet, described as "consistently miserable".
GEOLOGY

The KOE property lies within the Yukon Crystalline geological province, a region predominately underlain by Precambrian to Triassic schists and gneisses of the Yukon Metamorphic Complex. The metamorphic rocks have been intruded by granitic rocks ranging in composition from syenites to quartz diorite, and in age from Triassic to early Tertiary. Volcanics of Mid Cretaceous to Early Tertiary age, with some sediments, locally overlie the metamorphics and older intrusives.

The property is underlain by three suites of rocks, the most extensive being those regionally mapped as Tertiary Casino Volcanics (Tempelman-Kluit, Map 16-1973). These rocks look similar to and may be the equivalent of the Mt. Nansen Volcanic suite, now thought to be mid to Late Cretaceous. Lithologies range from massive to flow banded rhyolite and rhyolite lapilli tuff through to massive andesite and andesitic tuff with almost every conceivable combination in between.

Underlying the volcanic rocks to the southwest are gneisses and phyllites of the Yukon Metamorphic Complex. The contact between the two suites is marked in part by a southeast trending fault zone (the 'KOE Fault') through the central portion of the property and in part by a sub-horizontal locally brecciated contact. Major intrusives of both the younger and older suites mark the northwestern and southeastern borders of the claims. Both suites have compositions near to or overlapping the mutual boundaries of granodiorite, quartz monzonite, and monzonite. Minor intrusives
include granodiorite to monzonite dykes, andesite dykes and rhyolite dykes. A simplified version of the geology appears on Figure 3, and the detailed version on Figure 3a of the 1984 KOE Report.

Alteration is widespread and strong, particularly in the rhyolitic volcanics which are broadly sericitized and pyritized, variably silicified and clay altered, and boron rich. One consequence of the alteration is spectacular gossan development on several of the ridges. It is not clear how much of the alteration was a post-volcanic feature related to young intrusion, and how much was contemporaneous with volcanism.
HISTORY

The site of the present KOKUP Claims, immediately NW of the KOE was examined for porphyry Cu-Mo potential in 1969 and 1970 by Newmont Mining Corporation and United Keno Hill Explorations Ltd. The result of a 6 hole - 4584 foot drilling program was several intersections carrying in the order of 0.02% Cu, 0.015% Mo.

At the same time the DR and PATSY Claims were staked over the area of, as well as N. of, the present KOE Claims. The result of a season's work by Archer, Cathro and Associates on behalf of the Dawson Range Joint Venture was the delineation of a 600m by 300m soil Mo anomaly, apparently on the N. fringe of what is now the KOE Claim group, and a 1200m x 600m soil Cu anomaly overlying the rhyolites.

The KOE Claims were staked by Kerr Addison in August 1983 pursuant to the discovery of Au and Ag in float during regional reconnaissance. Further geological mapping and geochemical sampling in 1984 narrowed the target area to a NW trending zone some 750m long.

1985 PROGRAM

Our work this year consisted of a total of 113 field-person days, between the 13th of June and 12th July. It comprised:

1. An upgrading of the 1984 picket grid, the full cross-line length now totalling 15.6 km.

2. A geochemical survey comprising 400 soil samples, 173 rock float samples, and 51 trench samples, all analysed for Au, Ag, As and Sb.
3. An electromagnetic survey over the entire grid.

4. Trenching, using a hand-held drill. Five trenches were cut with a cumulative length of 38.5 m.

ROCK SAMPLING

The float sampling was concentrated mainly within the 750m long zone roughly outlined the previous year. Partly as a consequence of this concentration, a high proportion of the resulting 173 samples proved to be strongly anomalous in several or all of the elements analysed. 42 exceeded 100 ppb in Au, and 43 exceeded 10 ppm Ag. Brief descriptions of some of the better samples are shown in Table I. As in 1984 the better results were obtained from small drusy to massive quartz veins with or without arsenopyrite seams, and from strongly altered fault-brecciated material. (See Table I). A fuller description of the anomalous materials and comments on the inter-element correlations was included in the 1984 property report.

The most interesting cluster of anomalous responses is from the topographic saddle located between grid lines 2N and 1S. (See Figure 3). The best 8 grab samples there yielded an approximate average of 0.14 oz/t Au and 15.6 oz/t Ag. These are grab samples chosen for quartz or breccia content but not otherwise selective. In the same area in 1983, one deliberately select sample yielded 1650 ppb Au and 140.12 oz/t Ag.
<table>
<thead>
<tr>
<th>SAMPLE NO.</th>
<th>LOCATION</th>
<th>TYPE</th>
<th>DESCRIPTION - REMARKS</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Float-grab</td>
<td>Quartz and arsenopyrite blebs and stringers in gneiss (?)</td>
<td>(2)</td>
</tr>
<tr>
<td>5CR45</td>
<td>Line 1N</td>
<td>Float-grab</td>
<td>Dark green, fine grained, sulfide stained rock</td>
<td>(2)</td>
</tr>
<tr>
<td>5CR56</td>
<td>Line ON</td>
<td>Float-grab</td>
<td>Honeycombed leached quartz.</td>
<td>(2)</td>
</tr>
<tr>
<td>5CR56</td>
<td>Line ON</td>
<td>Float-grab</td>
<td>Drusy quartz veinlets</td>
<td>(2)</td>
</tr>
<tr>
<td>5CR46</td>
<td>Line 1N</td>
<td>Float-grab</td>
<td>No description. Also has 3550 ppm Cu.</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Float-grab</td>
<td>Quartz veinlet 2 to 4 cm wide, with arsenopyrite. Has 4280 ppm Cu.</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Float-grab</td>
<td>Vuggy quartz - sulphide vein.</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Float-grab</td>
<td>As FR 14. Has 5590 ppm Cu.</td>
<td>(2)</td>
</tr>
<tr>
<td>5FR2</td>
<td>Line ON</td>
<td>Float</td>
<td>Strongly limonitic boxwork in gneiss with minor quartz. From 35cm boulder.</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Float</td>
<td>Gneiss with quartz and arsenopyrite rich seamlets.</td>
<td>(2)</td>
</tr>
<tr>
<td>5J26R</td>
<td>Line 15S</td>
<td>Composite</td>
<td>Quartz vein, drusy, 2% grey sulphide</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>float</td>
<td>Mix of 7cm drusy, vuggy, sintery quartz vein with chalcedony veinlets and 20cm of argillized granite wallrock.</td>
<td>(2)</td>
</tr>
<tr>
<td>5CR23</td>
<td>Line 15S</td>
<td>Outcrop</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>SAMPLE No.</td>
<td>LOCATION</td>
<td>TYPE</td>
<td>DESCRIPTION - REMARKS</td>
<td>RESULTS</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>5CR24</td>
<td>Line 15S</td>
<td>Float</td>
<td>Silicified gneiss with minor arsenopyrite and pyrite</td>
<td>375 (7.6) 9600 >1000.0</td>
</tr>
<tr>
<td>5LR2</td>
<td>Line 15S</td>
<td>Float</td>
<td>Limonitic breccia with many quartz vein-lets and grey black soft metallic mineral</td>
<td>8400 (19.5) >10,000 >1000.0</td>
</tr>
<tr>
<td>5LR3</td>
<td>Line 15S</td>
<td>Float</td>
<td>Drusy quartz vein in granodiorite with galena bleb (has 5.7% pb)</td>
<td>725 (14.6) >10,000 >1000.00</td>
</tr>
<tr>
<td>5CR48</td>
<td>Line 16S</td>
<td>Float</td>
<td>Quartz vein, fine to medium grained, grey to white, vuggy, limonitic, 3 to 8 cm thick</td>
<td>1350 88.0 >10,000 280.0</td>
</tr>
</tbody>
</table>
The thicknesses of vein float material from this zone, as elsewhere, appear to be restricted to a few cm. The dimensions could be misleading however because much of this material is brecciated at source, and because of the high rate of erosion (rapid comminution) known to be present in these highlands.

A trench sample from the above zone yielded 0.12 oz/t Au, 4.9 oz/t Ag over 35cm - the greatest known mineralized width yet observed on the property.

SOIL SAMPLING

Soil sample results were contoured intuitively as shown in Figures 5a to d.

Despite poor soil development the survey proved instructive. The four elements display good correlation among themselves, with somewhat greater downslope dispersion for As and Sb. In addition they have generally good correlation with the observed anomalous float and with the major faulting. They confirm that the vicinity of 1N, 8E has best indicated potential for precious metal mineralization.
A VLF-EM survey was undertaken as an aid to mapping with favourable results. Fraser-filtered in-phase responses correlated well with mapped faults, and extend them to confirm the presence of a major NW fault system. (See Figure 6).

Attempts to further refine the mapping by use of a magnetometer - especially the distribution of the andesite, which is locally fairly strongly magnetic, - were a dismal failure. The cause was a strong and erratic diurnal variation during almost the entire period of the field program.

TRENCHING

The trench sampling program (Figures 7a to e) was beset by the difficulty of successfully penetrating frozen overburden with a light weight drill, with the result that the trenches could not be optimally placed. The results of the trenching summary in Table II.

In general the trenches exposed widely silicified volcanics cut by faults and by narrow clay altered zones - a reverse of the 'normal' epithermal setting where silicification is subordinate to and/or enclosed by a clay alteration envelope.
TABLE II
1985 KOE TRENCHING SUMMARY

<table>
<thead>
<tr>
<th>TRENCH #</th>
<th>LENGTH</th>
<th>DESCRIPTION</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-1</td>
<td>9.0m</td>
<td>A >7.5m width of silicified andesite is cut by a 4m wide fault zone, probably part of a fault traceable for >400m. Included vein has N15° W trend.</td>
<td>over 1.0 m</td>
</tr>
<tr>
<td>85-2</td>
<td>8.1 m</td>
<td>5.5 m of silicification at the andesite/rhyolite porphyry fault contact. A vein here also trends N15° W.</td>
<td>Minor anomalous As and Sb</td>
</tr>
<tr>
<td>85-3</td>
<td>9.3 m</td>
<td>Limonitic to brecciated rhyolite cut by clay gouge, probably part of a 1600 m long fault strand. Vein is N10°E/77°E.</td>
<td>over 35 cm</td>
</tr>
<tr>
<td>85-4</td>
<td>3.5 m</td>
<td>Silicified andesite cut by narrow fault.</td>
<td>weakly anomalous As and Sb</td>
</tr>
<tr>
<td>85-5</td>
<td>8.6 m</td>
<td>Silicified rhyolite lapilli tuff cut by limonitic to clay altered zones and a quartz-sulphide vein.</td>
<td>over 8 cm</td>
</tr>
</tbody>
</table>
SAMPLE No. – Au (ppb), Ag (ppm), As (ppm), Sb (ppm)

1. ANDESITE, WEAKLY SILICIFIED, PYRITIC, BLOCKY TO MASSIVE
2. HIGHLY FRACTURED & ALTERED ANDESITE
3. QUARTZ SULPHIDE VEIN
4. SILICIFIED CLAY ALTERED LIMONITIC FAULT BRECCIA
5. "MASSIVE" LIMONITIC FAULT GAUGE
6. MAINLY GNEISSES

METRES

KOE CLAIMS
TRENCH 85-1
SECTION LOOKING NORTH

FIG. No. 7a
GRAB SAMPLES:
50210 - <5, 8.3, 92, 27.0
50211 - <5, 5.4, 57, 10.0
50212 - <5, 7.1, 90, 60.0
50213 - <5, 0.5, 35, 7.4
50214 - <5, 1.4, 20, 3.0

DRUSY QTZ. - HEM.

50 m at 014° to LBS, 13E

TALUS

1 ANDESITE, FRESH, DARK GREEN, PYRITIC
2 ALTERED & FRACTURED ANDESITE.
3 SILICIFIED & PYRITIC (10-40%) ZONE, SOME ASPY.
4 LIMONITIC GAUGE WITH SIL. - SV. CLASTS.
5 INTENSELY SILICIFIED, WEAKLY PYRITIC ZONE.
6 SILICIFIED BRECCIA WITH HEM., LIM. & CLAY ALTERATION.
7 SILICIFIED & BRECCIATED QTZ. - FELDSPAR PORPHYRY OR RHYOLITE PORPHYRY.
8 DOMINANTLY CLAY ALTERED QTZ. FELDSPAR PORPHYRY OR """
SAMPLE No. - Au (ppb), Ag (ppm), As (ppm), Sb (ppm)

0 1 2 3
METRES

KOE CLAIMS
TRENCH 85-2
SECTION LOOKING NORTH

FIG. No. 7b
1. Limonitic weathering, highly fractured rhyolite.
2. Rhyolite breccia, fine to coarse.
3. Quartz sulphide vein in clay altered zone.
4. Limonitic rhyolite (lapilli), slightly brecciated.
5. Massive, blocky grey rhyolite.
7. Mixture of grey silicified rhyolite porphyry & clay gouge.

SAMPLE No. - Au (ppb), Ag (ppm), As (ppm), Sb (ppm)

KOE CLAIMS
TRENCH 85 - 3
SECTION LOOKING NORTH

FIG. No. 7c
1. Silicified, highly limonitic andesite.
2. Silicified andesite porphyry with ex. pyrite boxwork & Qtz. veinlets.
3. Clay fault gouge, pinkish.
4. Silicified andesite breccia.

KOE CLAIMS
TRENCH 85 - 4
SECTION LOOKING WEST

FIG. No. 7d
I SILICIFIED RHYOLITE, LAPlLLl TUFF, MODERATE TO STRONG CLAY ALTERATION.

2 HEAVILY LIMONTIC & HEMATITIC SILICIFIED LAPlLLl TUFF, SOME LOCAL BRECCIATION

3 QTZ. SULPHIDE VEIN

4 LIMONITIC & CLAY ALTERED SILICIFIED LAPlLLl TUFF, INTENSE GREY SULPHIDE STAIN.

SAMPLE No. – Au (ppb), Ag (ppm), As (ppm), Sb (ppm)

1 SILICIFIED RHYOLITE (), LAPlLLl TUFF, MODERATE TO STRONG CLAY ALTERATION.

2 HEAVILY LIMONTIC & HEMATITIC SILICIFIED LAPlLLl TUFF, SOME LOCAL BRECCIATION

3 QTZ. SULPHIDE VEIN

4 LIMONITIC & CLAY ALTERED SILICIFIED LAPlLLl TUFF, INTENSE GREY SULPHIDE STAIN.

SAMPLE No. – Au (ppb), Ag (ppm), As (ppm), Sb (ppm)

0 1 2 3

METRES

KOE CLAIMS
TRENCH 85 - 5
SECTION LOOKING NORTH

FIG. No. 7e
CONCLUSIONS AND RECOMMENDATIONS

Precious metals, with minor associated base metal are present in massive quartz-arsenopyrite, in drusy quartz, and in structural breccias. Most of this material is observed in float but trenching suggest that it's source is N15°W and N15°E trending narrow veins, the maximum known mineralized thickness being 35 cm. Erosional considerations and the possible in situ disruption of some veins by late faulting suggest that we should not be too discouraged by the apparent narrowness of the veins.

High grade Ag and moderately high grade are present at several locales in the overall 750 m long area of interest. The most promising zone is some 100m x 200m in extent where some excellent grade float and one fair trench assay (0.12 oz/t Au, 4.9 oz/t over 35 cm) are associated with strong faulting and with a well developed soil anomaly across a topographic saddle. An ore zone could be present here if we allow for the formation of a stockwork, the formation of ore chutes at fault strand intersections, and/or greater thicknesses of mineralization where it has not been disrupted by late faulting.

The results are sufficiently promising to justify a short drill program. Approximately 450 m of drilling in, say, 3 holes would provide a sparse test of the main zone of interest. The cost would be of the order of $90,000.

D. Arold
GEOCHEMICAL PROCEDURES

Soil samples were collected from available material, mainly a brown clay which can be considered as a poorly developed 'B' horizon, at depths of 10 to 25 cm, using high-wet strength paper bags.

The rocks and soils were analysed by Chemex Labs Ltd. of North Vancouver, using the standard atomic absorption techniques, Au however being treated by fire-assay pre-concentration. A small group of the higher response samples were also treated by traditional fire assay. This was done particularly for Ag samples yielding more than 10 ppm by geochemical analysis. Our experience in the Dawson Range is that geochemical analyses for values greater than this tend to be unreliable, sometimes markedly so.

GEOPHYSICAL PROCEDURES

A scintrex SE-80 VLF instrument was employed for the electromagnetic survey, using the Seattle transmitter as a power source. The resulting readings were Fraser-filtered (i.e. plotted as a first derivative) to remove the topographic displacement effect on cross-over points.
1985 Program Cost

KOE CLAIMS

(13th June to 12th July, 1985)

<table>
<thead>
<tr>
<th>Labour</th>
<th>Function</th>
<th>Days Worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Arscott</td>
<td>Geologist</td>
<td>Office: 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Travel: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field: 3</td>
</tr>
<tr>
<td>F. Daley</td>
<td>Geologist</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Baldys</td>
<td>Geologist</td>
<td></td>
</tr>
<tr>
<td>H. Johnson</td>
<td>Blaster/technician</td>
<td></td>
</tr>
<tr>
<td>L. Lyons</td>
<td>Geologist</td>
<td></td>
</tr>
<tr>
<td>J. Pautler</td>
<td>Geologist</td>
<td></td>
</tr>
<tr>
<td>L. Grexton</td>
<td>Geologist</td>
<td></td>
</tr>
</tbody>
</table>

Total wages, equivalent to $108.00 per person day = $14,904.00

Expenses

Analyses:
- 222 rocks @ $17.32 (Au,Ag,As,Sb) = $3,845.00
- 400 soils @ $14.60 (Au,Ag,As,Sb) = $5,840.00

Helicopter
Fixed Wing
Food 126 days @ $16.00 = 2,016.00
Field supplies 115 days @ $10.00 = 1,150.00
Camp supplies 115 days @ $15.00 = 1,725.00
Trucks (2) 1 x 28 days x $40.
plus 1 x 7 days x $40 = 1,400.00
Shipping, approx.
Radio, Telephone, miscellaneous = 400.00

TOTAL PROGRAM COST = $41,983.08

D. Arscott
QUALIFICATION

I, David Philip Arscott, am a Professional Engineer registered in British Columbia.

I have had 18 years experience in Mineral Exploration, mainly in the Canadian Cordillera.

I directed the 1985 program on the KOE Claims and aided directly in the fieldwork.

David P. Arscott, P.Eng.