Interpretation Report on
INDUCED POLARIZATION,
HORIZONTAL LOOP ELECTROMAGNETIC,
AND MAGNETIC SURVEYS
performed on
BONANZA CREEK AREA,
Yukon Territory

for

ARBOR RESOURCES INCORPORATED

091604

GEOTERREX LIMITED
Sidney, B.C.

October, 1984
Job 4-125

geoterrex
LTD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II PERSONNEL AND EQUIPMENT</td>
<td>2</td>
</tr>
<tr>
<td>A. Personnel</td>
<td>2</td>
</tr>
<tr>
<td>B. Equipment</td>
<td>2</td>
</tr>
<tr>
<td>III SURVEY PROCEDURES</td>
<td>3</td>
</tr>
<tr>
<td>A. Induced Polarization</td>
<td>3</td>
</tr>
<tr>
<td>1. Method</td>
<td>3</td>
</tr>
<tr>
<td>2. Data Reduction and Presentation</td>
<td>5</td>
</tr>
<tr>
<td>B. Horizontal Loop Electromagnetic</td>
<td>7</td>
</tr>
<tr>
<td>1. Method</td>
<td>7</td>
</tr>
<tr>
<td>2. Data Reduction and Presentation</td>
<td>9</td>
</tr>
<tr>
<td>C. Magnetics</td>
<td>11</td>
</tr>
<tr>
<td>1. Method</td>
<td>11</td>
</tr>
<tr>
<td>2. Data Reduction and Presentation</td>
<td>11</td>
</tr>
<tr>
<td>IV SURVEY STATISTICS</td>
<td>12</td>
</tr>
<tr>
<td>A. Boulder Creek</td>
<td>12</td>
</tr>
<tr>
<td>B. Upper Boulder Creek</td>
<td>12</td>
</tr>
<tr>
<td>C. Plinc Claims</td>
<td>13</td>
</tr>
<tr>
<td>V DISCUSSION OF RESULTS</td>
<td>14</td>
</tr>
<tr>
<td>A. General</td>
<td>14</td>
</tr>
<tr>
<td>B. Boulder Creek</td>
<td>15</td>
</tr>
<tr>
<td>C. Upper Boulder Creek</td>
<td>16</td>
</tr>
<tr>
<td>D. Plinc Claims</td>
<td>17</td>
</tr>
<tr>
<td>VI CONCLUSIONS AND RECOMMENDATIONS</td>
<td>18</td>
</tr>
</tbody>
</table>

APPENDICES

Appendix A - Curriculum Vitae
Appendix B - Instrument Specifications
I INTRODUCTION

During the period September 21 to September 30, 1984, Geoterrrex Limited of 9865 West Saanich Road, Suite 107A, Sidney, British Columbia, V8L 3S1 conducted an induced polarization, horizontal loop electromagnetic, and magnetic survey on behalf of Arbor Resources Incorporated, 675 West Hastings Street, Suite 1500, Vancouver, British Columbia, V6B 1N2.

Five lines were completed on three separate areas known as Boulder Creek, Upper Boulder Creek, and the Plinc Claims. These areas are located west of Bonanza Creek, near the town of Dawson City, Yukon Territory, (see Figure 1).

The survey was designed to follow-up an airborne INPUT survey to delineate possible gold bearing sulphide deposits. Lines were established by Arbor Resources personnel.
II PERSONNEL AND EQUIPMENT

A. Personnel

Geoterrex Limited provided the following personnel for the completion of survey related tasks:

James P. Hawkins Geophysicist/Party Manager
Brian G. Branting Geophysicist/Operator

In addition, Arbor Resources supplied the following helpers:

Perry Grunenberg
Larry Zecchel

Curriculum vitae for Mr. Hawkins can be found in Appendix A, following the report.

B. Equipment

Geoterrex Limited provided the following equipment for field operations:

1 Scintrex IPR-10A induced polarization receiver
1 Scintrex IPR-7 induced polarization receiver
1 Elliot 15A induced polarization transmitter and motor generator
1 Apex Parametrics Max-min II+ horizontal loop electromagnetic unit
1 Scintrex MP-2 proton precession magnetometer
2 Motorola FM radio transceivers
1 Four wheel drive Suburban

All tools, wire, and ancillary equipment necessary for safe and efficient field operations.

Instrument specifications can be found in Appendix B, following the report. A diagram of the Scintrex IPR-10A induced polarization receiver measurements is shown in Figure 2.
NEWMONT TYPE CHARGEABILITY IS APPROXIMATED BY: \[M_n = \frac{M_{32}}{0.7} \]
III SURVEY PROCEDURES

A. Induced Polarization

1. Method

The induced polarization method (IP) is based on the electrochemical phenomenon of "over-voltage", that is; on the establishment and detection of double layers of electrical charge at the interface between ionic and electronic conducting material when the electrical current is caused to pass across the interface.

All natural occurring sulphides of metallic lustre, some oxides and graphite give marked induced polarization responses when present in sufficient volume even when such materials occur in low concentrations and in the form of discrete un-connected particles. Thus, induced polarization has general application to the direct detection of disseminated sulphide deposits. Each rock and soil type also exhibits an induced polarization response, usually confined to a relatively low amplitude range, which is characteristic of the mineral or soil. However, certain clays and "laminar" materials including serpentine, sericite and chlorite may give rise to an anomalous response. These effects are attributed largely to "membrane" polarization.

In order to measure IP effects in a volume of rock, a current is caused to flow through it via two current electrodes
contact points and the resulting potential differences are measured across two potential electrode contact points.

In practice, two different techniques are used, namely "Time Domain" and "Frequency Domain". For the Time Domain technique, which was used for this survey, a direct current is allowed to flow for several seconds and then cut off. The decay of the polarization voltages built up during the passage of the current is studied during the time after the current is switched off. In the Frequency Domain technique, a Sine wave current form of two low, but well separated frequencies, is used. Since polarization effects take an appreciable time to build up, the response at the lower frequencies will be greater so that apparent resistivities or transfer impedances between the current and measuring circuits will be larger at lower frequency.

The field measurements taken with the Time Domain technique are as follows:

1. the applied current, I_a, flowing through the two current electrodes;

2. the difference in potential, V_p, existing between the potential electrodes while the current is flowing;

3. the apparent chargeability, M_a, which is the observed IP effect for a single current pulse.
The IP effect measured for the present survey is the normalized integrated decay voltage between 0.45 seconds and 1.10 seconds following the current shut off time. The transmitted current cycle timing was 2 seconds on, 2 seconds off. Figure 3 illustrates an aspect of the induced polarization method.

2. Data Reduction and Presentation

The apparent chargeability, Ma, in milliseconds or millivolt seconds per volt is read directly on the IP receivers used.

From observations of the difference in potential and the applied current, the apparent resistivity may be calculated at each station as follows:

$$\rho_a = \frac{V_p \cdot K}{I_a}$$

where: $V_p =$ the difference in potential in volts;
$I_a =$ applied current in amperes;
$K =$ constant depending on array geometry

The apparent resistivity, ρ_a, is in ohm-metres. For this particular survey, the dipole-dipole array was employed. The K factor for this array is:

$$K = na \ (n+1) \ (n+2)$$

where: $a =$ the dipole length in metres;
$n = 1, 2, 3, \text{ etc.};$
$na =$ the distance between the near potential electrode and the near current electrode.
FIGURE 3
INDUCED POLARIZATION - RESISTIVITY

APPARENT CHARGEABILITY (msec)

APPARENT RESISTIVITY (ohm-meters)

OVERBURDEN

GRANITE

SULPHIDE DEPOSIT

DIPole DIPOLE ARRAY
Figure 4 illustrates the dipole-dipole configuration and pseudo-section plotting positions.

Induced polarization pseudo-sections are appended to this report.
FIGURE 4

DIPOLE-DIPOLE ELECTRODE CONFIGURATION

TRANSMITTER

C2

C1

x

n+1

a

RECEIVER

P1

Vp

P2

n+1

a

C1, C2 CURRENT ELECTRODES
P1, P2 POTENTIAL ELECTRODES
Ia APPLIED CURRENT
Vp PRIMARY VOLTAGE
a DIPOLE LENGTH
n 1, 2, 3, ... etc.

APPARENT RESISTIVITY \(\rho_a = \frac{Kn Vp}{Ia} \)
WHERE \(Kn = \tan (n+1) (n+2) \)

PLOTTING OF MEASUREMENTS ON PSEUDO-SECTIONS

\(4a \) (n=4) \n\(3a \) (n=3) \n\(2a \) (n=2)
\(a \)
\(1a \) (n=1)

P3
P4
P3
P2
P1

n=1
n=2
n=3

etc.
APPARENT CHARGEABILITY

APPARENT RESISTIVITY

LINE #: L8 - 1150 S
LINE DIRECTION: ____________________________
DIPOLE LENGTH: 25 METRES
DATE: SEPT 24, 1984

PRELIMINARY COPY

INDUCED POLARIZATION
AND RESISTIVITY SURVEY
(DIPOLE-DIPOLE ARRAY)
PROJECT #: 4-135
APPARENT CHARGEABILITY

LINE #: L.B.-O
LINE DIRECTION:
DIPOLE LENGTH: 25 METRES
DATE: SEPT 23, 1984

APPARENT RESISTIVITY

PRELIMINARY COPY

INDUCED POLARIZATION AND RESISTIVITY SURVEY
(DIPOLE - DIPOLE ARRAY)
PROJECT #: 4-125
INDUCED POLARIZATION AND RESISTIVITY SURVEY

APPARENT CHARGEABILITY

APPARENT RESISTIVITY

PRELIMINARY COPY

LINE #: U3-0

LINE DIRECTION:

DIPOLE LENGTH: 25 METRES

DATE: SEP 25, 1984

INDUCED POLARIZATION AND RESISTIVITY SURVEY

(DIPOLE-DIPOLE ARRAY)

PROJECT #: 4-125
APPARENT CHARGEABILITY

APPARENT RESISTIVITY

PRELIMINARY COPY

INDUCED POLARIZATION AND RESISTIVITY SURVEY
(DIPOLE-DIPOLE ARRAY)

LINE #: UB-0
LINE DIRECTION:
DIPOLE LENGTH: 25 METRES
DATE: SEPT 27 1984

PROJECT #: 4125
APPARENT CHARGEABILITY

Contour Interval - 5 msc.

APPARENT RESISTIVITY

Contour Interval - 1.25 per decade ohm-metres

PRELIMINARY COPY

INDUCED POLARIZATION
AND RESISTIVITY SURVEY
(DIPOLE-DIPOLE ARRAY)

LINE #: LP-0
LINE DIRECTION:
DIPOLE LENGTH: 25 METRES
DATE: SEPT 26, 1944

PROJECT #: 4-125
APPARENT CHARGEABILITY

Contour Interval: 5 nsec.

Line 4:

LP-0

Induced Polarization

LINE 4

Dipole Length: 25 Metres

DATE: Sept 24, 1964

APPARENT RESISTIVITY

Contour Interval: 1.25 per decade ohm-metres

LINE 8

Preliminary Copy

Induced Polarization

And Resistivity Survey

(Dipole-Dipole Array)

Project #: 4-125
B. Horizontal Loop Electromagnetic

1. Method

For the horizontal loop EM method, two modes of operation are possible. The "maximum" mode requires that two coils, one receiving and one transmitting, are held on a coplanar position and at a fixed distance apart. For the "minimum" mode, the transmitting coil is again held in the horizontal position, but the receiving coil is held in the vertical position, the axis of which contains the transmitter coil. In both cases, the receiver measures the intensity of both the in-phase and quadrature components of the secondary field due to the eddy currents induced in the ground. These measurements are read as a percentage of the primary field intensity. A cable connects the two coils in order to provide a reference signal from the transmitter to the receiver so that the primary field can be cancelled and the phase determined. For the present survey only the "maximum" mode was used.

The results are presented in profiles showing the variation of the in-phase and quadrature components of the secondary field plotted at the midpoint between the coils. The survey procedures using the horizontal loop method requires that the two coils move progressively, as a pair, along the same traverse line. Readings were taken every 25 metres.

The horizontal loop coil configuration gives results which allow a quantitative interpretation of a particular conductor's parameters. The profile over a single vertical conductor shows a negative trough on either side of which the shoulders exhibit positive results. Determinations of depth and conductivity thickness products can readily be made by comparing the
maximum amplitude of the negative trough of the in-phase and quadrature components. The relative thickness of a conductor along the survey traverse may also be determined from the profiles. The shape of the profile over a conductor is sensitive to the direction of the dip.

The operating frequencies and coil separation used are chosen at the geophysicist's discretion. These choices are dependent upon factors such as anticipated depth to the conductor source and the conductivity of the overburden. The coil separation used for the present surveying was 100 metres, with part of line LB-0 being resurveyed with a coil separation of 50 metres to detail the conductor. The frequencies employed were 222 Hz, 444 Hz, 888 Hz, 1777 Hz, and 3555 Hz to provide additional information to improve the interpretation.

Of the frequencies used, the lower frequencies are generally considered more reliable for quantitative depth and conductivity-thickness determination because they are less distorted by the "inductive thickness effect" of the conductor and "current gathering", the galvanic effect caused by a relatively conductive host rock.
2. Data Reduction and Presentation

The horizontal loop electromagnetic system is sensitive to the transmitter-receiver (Tx-Rx) coil separation and the coplanarity of these coils. In flat terrain, the units are levelled using bullseye levels to achieve coplanarity and as the coil separation is constant, the primary field strength can be effectively tuned out by adjusting the coil separation control, located on the receiver front panel, to the correct coil separation. In rough terrain, however, it is necessary to tilt the coils to the proper inclination to achieve coplanarity and to mathematically correct the EM responses for the effects of the primary field.

Line chainage is important to correct the effects. The accepted practice is to employ a hand held clinometer and determine a constant horizontal station separation through secant chaining. The inclinations are recorded to calculate the inclination for the Tx-Rx coil separation and as the horizontal separation is maintained between the coils allows the following corrections to be applied.

For the in-phase only, the following correction is first added:

$$IP = + \left[1 - \left(\cos^{-1} \left(\frac{\$ \text{slope}}{100} \right) \right)^3 \right] \times 100$$

then the following correction must be applied to both the in-phase and quadrature response.

$$\times \left(\frac{1}{\cos^{-1} \left(\frac{\$ \text{slope}}{100} \right)} \right)^3$$
Chainage errors can cause variations in the base level of the in-phase component which appears to be anomalous responses. These can be mathematically corrected once the inclination and slope distance over the mischained line segment have been checked. In some cases, it may be necessary to resurvey the line with the EM system, but this is not always the case. In extremely rough topography, chainage errors become more prevalent due to large numbers of inclination and slope distance measurements that have to be made.

Horizontal loop electromagnetic profiles are appended to this report.
C. Magnetics

1. Method

A magnetometer has a sensor coil which is wrapped by a coil or wire and filled with any dipolar liquid, such as water, kerosene, alcohol, etc. Essentially, protons in the liquid act as small spinning magnetic dipoles which are temporarily aligned when a current is generated in the coil of wire. When the current is removed, the spin of the protons causes them to precess about the direction of the earth's magnetic field, generating a small signal in the same coil used to align the protons. This signal is proportional to the total magnetic field intensity and is accurate within ±1 gamma.

Variations in the earth's magnetic field may occur from magnetic storms, micropulsations, solar wind, etc. Therefore when conducting magnetic surveys, a field base station is commonly designated and all data is corrected with this station as a reference to diurnal variations. Data is collected along survey "loops" of under two hours duration.

2. Data Reduction and Presentation

As stated above, magnetic data is corrected for diurnal variations with the field base station initial value taken as the base reading.

Magnetic profiles are presented with the horizontal loop electromagnetic profiles, and are appended to the report.
IV SURVEY STATISTICS

A. Boulder Creek

Three parallel lines, LB-0, LB-1+50S, and LB-4+00S were established. Geophysical coverage on these lines are as follows:

I.P.
- LB-0, one array, 300 metres, 100E to 400E
- LB-1+50S, one array, 250 metres, 50E to 300E

HELM
- LB-0, 5 frequencies, 100 metre coil separation, 525 metres, 50E to 575E
- LB-0, 5 frequencies, 50 metre coil separation, 375 metres, 75E to 450E
- LB-1+50S, 5 frequencies, 100 metre coil separation, 425 metres, 50E to 475E
- LB-4+00S, 5 frequencies, 100 metre coil separation, 375 metres, 50E to 425E

MAG
- LB-0 - 625 metres, 0 to 625E
- LB-1+50S - 525 metres, 0 to 525E
- LB-4+00S - 475 metres, 0 to 475E

B. Upper Boulder Creek

One line, UB-0, was established. Two induced polarization arrays were surveyed, covering 550 metres, from 50W to 600W. Horizontal loop electromagnetic coverage, on five frequencies, was 450 metres, from 50W to 500W. Magnetic coverage was 550 metres, from 0 to 550W.
C. Plinc Claims

One line, LP-0, was established with hip chain and topofil. Two induced polarization arrays were surveyed, covering 550 metres from 275E to 275W. No horizontal loop electromagnetic or magnetic surveying were conducted.
V. DISCUSSION OF RESULTS

A. General

Three geophysical methods, namely induced polarization, horizontal loop electromagnetic, and magnetic, were used to follow-up airborne anomalies, or in one case, a soil geochemical anomaly, with varying success. Generally speaking, the induced polarization method proved the most successful, readily delineating polarizable bodies. The horizontal loop electromagnetic surveys confirmed the induced polarizable anomalies, but seemed to respond to the edges of the polarizable body, and not the centre. Valuable information on the dip of the bodies was gathered from the electromagnetic data.

The magnetic data shows little or no correlation with either of the other methods, and is generally featureless. The magnetic data was not used in the interpretation of the results.
B. Boulder Creek

Three lines, LB-0, LB-1+50S, and LB-4+00S, were established to follow up a broad, three channel airborne anomaly at 20270E and 20281E.

An anomalous zone is present on all three lines. The results from the electromagnetic survey can best be described as a "zone" of conductivity from 150E to 375E on LB-0, from 100E to 300E on LB-1+50S, and from 125E to 300E on LB-4+00S. Zones of low resistivity and high polarizability roughly correlate.

On LB-0, the electromagnetic survey delineates two distinct current axes, at 212E and 325E. This is apparent on profiles from both the 100 metre coil separation and 50 metre coil separation surveys. The distinction is seen only on the higher frequencies, indicating weak conductivity. Interpretation indicates a conductor with a conductivity thickness of less than two siemens at a depth of less than ten metres. The induced polarization survey confirms the presence of polarizable material, with the electromagnetic anomalies corresponding to the edges of the induced polarization surface high.

On LB-1+50S the electromagnetic survey has an axis at 200E while the induced polarization anomaly is centred at 150E, indicating a west dip and the possibility of the polarizable material being in the hanging wall of the "conductor". The electromagnetic interpretation is similar to that of LB-0, a conductor at less than ten metres, but a slightly larger conductivity-thickness. A hole to test both anomalous regions
should be drilled; collar at 150E, dip of 45°, azimuth grid east.

On LB-4+00S the electromagnetic profiles have an axis of 262E. It is interpreted as being near surface, less than ten metres depth, with a conductivity-thickness of 4 siemens, and dipping to the west at approximately 60°. No induced polarization was done on this line.

To summarize, an anomalous zone of approximate two hundred metres width extends across the four hundred metres of line separation on the Boulder Creek grid. The zone is likely disseminated sulphides with current channeling along faults or increased sulphide concentrations. Emphasis should be placed on the induced polarization results, with electromagnetic anomalies being drilled only in conjunction with induced polarization anomalies.

C. Upper Boulder Creek

One line, UB-0, was established to follow up two conductors; 20290J, a five channel airborne anomaly, and 20290K, a three channel airborne anomaly.

A anomalous area is located at 200W on UB-0. The electromagnetic results appear to be a "contact" anomaly, representing the contact between a more resistive unit and a more conductive unit. The more conductive terrain is to the west, and the current axis is at 200W. No quantitative interpretation, such as dip, conductivity-thickness, or depth is possible.
The induced polarization results reflect the high conductivity background on the western part of the line. Polarizable material is however, apparent at 200W, and is associated with a resistivity low. This anomaly should be drilled at 200W on UB-0, drilling from west to east.

D. Plinc Claims

One line, LP-0, was established to follow up a soil geochemical anomaly.

A subtle induced polarization anomaly exists between approximately 37W and 37E, with chargeabilities of about five milliseconds above background and resistivities about several hundred ohm-metres below. To test this anomaly a hole should be drilled at 12E, to a depth of approximately fifty metres.

Another area of possible interest is, of course, located just off the end of the line that was surveyed, at approximately 300W. The last two set-ups on the induced polarization array had higher chargeabilities/low resistivities than average.
IV CONCLUSIONS AND RECOMMENDATIONS

Anomalous areas are readily apparent from the induced polarization data. The horizontal loop electromagnetic survey also detects anomalous areas, but seems to reflect the edges of the polarizable bodies. No response is apparent from the magnetics data.

If further work in this area is warranted, it is suggested that just the induced polarization method be used. A gradient array survey with an electrode separation (AB) in the order of three kilometres would allow an area one kilometre by two kilometre to be surveyed quickly and efficiently. Anomalous areas would then be detailed with dipole-dipole.

Consideration should also be given to having the INPUT airborne survey results re-interpreted. Many of the noted conductors appear to be from overburden sources, while some bedrock conductors were overlooked. Re-interpretation may help assign priorities for ground follow-up work, and would save money in the long run.

Geoterrex Limited would like to thank Arbor Resources, and especially Art Troup, Perry Grunenberg, and Larry Zecchel for their assistance and support throughout the survey.

Respectfully submitted

James P. Hawkins
James P. Hawkins,
Geophysicist
APPENDIX A

Curriculum Vitae
CURRICULUM VITAE

NAME: HAWKINS, James P.

POSITION: Western Manager, Ground Geophysics Surveys

NATIONALITY: Canadian

DATE OF BIRTH: 23 July, 1954

EDUCATION: 1973 - 1977 University of Western Ontario
B.Sc. Geophysics
1977 - 1978 University of New Brunswick
extended studies in Geology

EXPERIENCE:
1975 - 1978 (summers) Geophysical assistant on Geological Surveys of
Canada seismic crews in Ontario, Quebec, Maritimes,
and Western and high Arctic. Eventually acting as
party chief on permafrost projects; using resistivity,
radiometric, land based and marine seismic surveys.

1978 - 1982 Field Geophysicist with Geoterrex Limited conducting,
supervising and interpreting various types of ground
surveys including regional and detailed gravity,
I.P., seismic, magnetic, and frequency and time-
domain E.M. These projects have involved work from
the Canadian Arctic to the American Southwest, with
special emphasis on the Canadian and American Cordillera.

1982-present Geoterrex' Western Manager of Ground Geophysical
Surveys responsible for all phases of management,
interpretation, scheduling, supervision and long
range planning.
APPENDIX B

Instrument Specifications
SPECIFICATIONS

SCINTEX IPR-10A

INDUCED POLARIZATION RECEIVER

MANUFACTURER: Scintrex Limited
222 Snidercroft Road,
Concord, Ontario, Canada L4K 1B5

USE: Induced Polarization/Resistivity

TYPE: Time Domain-Digital/Analog Recording Capability

INPUT IMPEDANCE: 3 megohms

PRIMARY VOLTAGE RANGE: 30 microvolts to 30 volts - 12 steps

ACCURACY: ±3% full scale; 0.1% resolution

CHARGEABILITY RANGE: 100 milliseconds (100% full scale)

ACCURACY: ±3% full scale; 0.1 milliseconds resolution

PRIMARY SP BUCKOUT RANGE: ±1 volt with 1% accuracy, 1 millivolt resolution

AUTOMATIC SP TRACKING RANGE: 20 times, Vp, 30 microvolts to 1 volt

ANALOG RECORDER OUTPUT: ±4 volts full range, 1 K ohm source resistance

DIGITAL DISPLAY: LCD continuous (above -10°C)
LED flashing (below -10°C)

TRANSMITTER TIMING STABILITY: Need only exceed measuring program 1,2,4,8 quarter periods

POWER SUPPLY: 4 D size dry cells, 1 alkaline dry cell-penlight

OPERATING RANGE: 15°F to 140°C/ -10°C to + 60°C

DIMENSIONS: 12 x 6 x 7 inches/31 x 15 x 17 centimeters

WEIGHT: 8 pounds / 3.6 kilograms
SPECIFICATIONS
SCINTREX IPR-7
INDUCED POLARIZATION RECEIVER

MANUFACTURER: Scintrex Limited,
222 Snidercroft Road,
Concord, Ontario

USE: Induced Polarization/Resistivity

TYPE: Time Domain, Analog Newmont type

INPUT IMPEDANCE: 300 K ohms

PRIMARY VOLTAGE RANGE: 300 microvolts to 30 volts

ACCURACY: ±3% full scale

CHARGEABILITY (M)

RANGE: 0 to 100 and 0 to 300 milliseconds

ACCURACY: ±5% full scale

CURVE FACTOR (L)

RANGE: 0 to 100 and 0 to 300 milliseconds

ACCURACY: ±5% full scale

DELAY TIME BEFORE INTEGRATION: 0.45 seconds

INTEGRATION PERIOD: 0.65 seconds

SP AND VLF NOISE COM pensation:

Manual: ± 1.5 millivolts

Automatic: 1 mV range ± mV total

30 mV range ± mV total

OPERATING TEMPERATURE: -20°F to 130°F/-29°C to 55°C
(to 100% humidity non-condensing)

POWER SUPPLY: Internal rechargeable Nicad batteries

12 volts external charger

DIMENSIONS: 14 x 11 x 6.5 inches/35.5 x 28 x 16.5 centimeters

WEIGHT: 13.5 pounds/6.1 kilograms including batteries
SPECIFICATIONS

ELLIOT 15A

INDUCED POLARIZATION TRANSMITTER

MANUFACTURER: Elliot Geophysical Company
4653 East Pima Street,
Tucson, Arizona 85712

USE: Induced Polarization/Resistivity

TYPE: TimeDomain - Solid State

INPUT POWER: Single Phase - 400 cps, 115 volts, 2 KVA

OUTPUT POWER
VOLTAGE: 200 to 3000 volts in 12 taps
CURRENT: 5 amperes maximum

TIMING CYCLE: On and off periods adjustable

OPERATING TEMPERATURE: +5°F to 140°F/-15°C to +60°C

DIMENSIONS: 10.5 x 16 x 11.5 inches/26.7 x 40.6 x 29.2 centimeters

WEIGHT: 45 pounds/20.4 kilograms
SPECIFICATIONS

ELLIOT 15A

INDUCED POLARIZATION TRANSMITTER POWER SUPPLY

MANUFACTURER: Elliot Geophysical Company
4653 East Pima Street,
Tucson, Arizona 85712

TYPE: Alleco Brushless, single phase, 400 cps,
120 volts, shaft driven

OUTPUT: 2 KVA

ENGINE: Briggs and Stratton type 100232, gasoline 4 hp,
aircooled, recoil start

DIMENSIONS: 17 x 25 x 18 inches/ 43.2 x 63.5 x 45.7 centimeters

WEIGHT: 72 pounds/ 32.7 kilograms
SPECIFICATIONS
APEX PARAMETRICS MAXMIN II+
HORIZONTAL LOOP ELECTROMAGNETIC UNIT

MANUFACTURER: Apex Parametrics Limited
200 Steelcase Road East
Markham, Ontario, Canada L3R 1G2

USE:
a) Horizontal Loop Coplanar System (Max)
b) Horizontal Loop Minimum Coupled System (Min)
c) Vertical Loop-Fixed Transmitter (VL)

TYPE:
1) In phase and Quadrature components of secondary measured in Max and Min modes.
2) Tilt angle of total field measured in VL mode.
3) Direct readout on analog meters.

FREQUENCIES: 222, 444, 888, 1777 and 3555 cps

SCALE RANGES:
In phase: ±20% normal, ±100% by switch
Quadrature: ±20% normal, ±100% switch,
Tilt: ±75% slope, Null: null sensitivity adjustable by separation switch.

COIL SEPARATIONS:
Metres: 50, 100, 150, 200, 250, and 300 (MM II)
Feet: 200, 300, 400, 600, 800 and 1000 (MM II F)

PENETRATION: Up to 0.75 coil separation

READING REPEATABILITY: ±0.25% to ±1%, dependent on coil separation and frequency used.

TRANSMITTER DIPOLE MOMENT: 275 Atm2 at 222 cps, 250 Atm2 at 444 cps,
200 Atm2 at 888 cps, 110 Atm2 at 1777 cps and
55 Atm2 at 3555 cps.
Apex Parametrics Maxmin II+
Horizontal Loop Electromagnetic Unit

POWER SUPPLY:
Receiver: 4 - 9 volt alkaline transistor radio type
Transmitter: 12 volt 6 amp-hour Gel-cell rechargeable battery.

OPERATING TEMPERATURE:
-40°F to +140°F / -40°C to 60°C

WEIGHTS:
Receiver: 13 pounds / 6 kilograms
Transmitter: 30 pounds / 13.5 kilograms
SPECIFICATIONS

SCINTREX MP-2
GROUND MAGNOMETER

MANUFACTURER: Scintrex Limited
222 Snidercroft Road,
Concord, Ontario, Canada L4K 1B5

TYPE: Portable proton precession

RANGE: 20,000 to 100,000 gammas (25 overlapping steps)

SENSITIVITY: 1 gamma

ACCURACY: ±1 gamma over full range

SAMPLE RATE: Manual -3.7 seconds, automatic -3.7 seconds repetitive

GRADIENT TOLERANCE: Up to 1500 gammas/foot or 5000 gammas/metre

OUTPUT: 5 digit LED readout in gammas

POWER SUPPLY: 8 alkaline "D" dry cells (flashlight type)

TEMPERATURE RANGE: -30°F to +140°F/-35°C to +60°C

SENSOR: Omnidirectional, shielded, noise-cancelling dual coil, optimized for high gradient tolerance

DIMENSIONS:
Console: 3 x 6 x 10 inches/8 x 16 x 25 centimeters
Sensor: 3 x 6 inches/8 x 15 centimeters
Staff: 1 x 61 inches/3 x 155 meters

WEIGHT:
Console: 3.96 pounds/1.8 kilograms
Sensor: 2.9 pounds/1.3 kilograms
Staff: 1.3 pounds/0.6 kilograms
<table>
<thead>
<tr>
<th>CLAIM NAME</th>
<th>RECORD NO.</th>
<th>DATE CLAIM RECORDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syndicate 1</td>
<td>YA 79198</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 2</td>
<td>YA 79199</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 3</td>
<td>YA 79200</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 4</td>
<td>YA 79201</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 5</td>
<td>YA 79202</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 6</td>
<td>YA 79203</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 7</td>
<td>YA 79204</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 8</td>
<td>YA 79205</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 9</td>
<td>YA 79206</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 10</td>
<td>YA 79207</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 11</td>
<td>YA 79208</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 12</td>
<td>YA 79209</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 13</td>
<td>YA 79210</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 14</td>
<td>YA 79211</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 15</td>
<td>YA 79212</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 16</td>
<td>YA 79213</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 17</td>
<td>YA 79214</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 18</td>
<td>YA 79215</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 19</td>
<td>YA 79216</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 20</td>
<td>YA 79217</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 21</td>
<td>YA 79218</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 22</td>
<td>YA 79219</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 23</td>
<td>YA 79220</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 24</td>
<td>YA 79221</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 25</td>
<td>YA 79222</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 26</td>
<td>YA 79223</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 27</td>
<td>YA 79224</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 28</td>
<td>YA 79225</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 29</td>
<td>YA 79226</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 30</td>
<td>YA 79227</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 31</td>
<td>YA 79228</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 32</td>
<td>YA 79229</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 33</td>
<td>YA 79230</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 34</td>
<td>YA 79231</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 35</td>
<td>YA 79232</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 36</td>
<td>YA 79233</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 37</td>
<td>YA 79234</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 38</td>
<td>YA 79235</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 39</td>
<td>YA 79236</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>Syndicate 40</td>
<td>YA 79237</td>
<td>16 September, 1983</td>
</tr>
<tr>
<td>CLAIM NAME</td>
<td>RECORD NO.</td>
<td>DATE CLAIM RECORDED</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Filler 1</td>
<td>YA 84252</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>Filler 2</td>
<td>YA 04253</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>Filler 3</td>
<td>YA 84254</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>Filler 4</td>
<td>YA 84255</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>Filler 5</td>
<td>YA 84256</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>Filler 6</td>
<td>YA 84257</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>Filler 7</td>
<td>YA 84258</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>Filler 8</td>
<td>YA 84259</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>'83' 1</td>
<td>YA 79509</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 2</td>
<td>YA 79510</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 3</td>
<td>YA 79511</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 4</td>
<td>YA 79512</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 5</td>
<td>YA 79513</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 6</td>
<td>YA 79514</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 7</td>
<td>YA 79515</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 8</td>
<td>YA 79516</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 9</td>
<td>YA 79517</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 10</td>
<td>YA 79518</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 11</td>
<td>YA 79519</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 12</td>
<td>YA 79520</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 13</td>
<td>YA 79521</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 14</td>
<td>YA 79522</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 15</td>
<td>YA 79523</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 16</td>
<td>YA 79524</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 17</td>
<td>YA 79525</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 18</td>
<td>YA 79526</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 19</td>
<td>YA 79527</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 20</td>
<td>YA 79528</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 21</td>
<td>YA 79529</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 22</td>
<td>YA 79530</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 23</td>
<td>YA 79531</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 24</td>
<td>YA 79532</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 25</td>
<td>YA 79533</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 26</td>
<td>YA 79534</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 27</td>
<td>YA 79535</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 28</td>
<td>YA 79536</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 29</td>
<td>YA 79537</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 30</td>
<td>YA 79538</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>CLAIM NAME</td>
<td>RECORD NO.</td>
<td>DATE CLAIM RECORDED</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>'83' 31</td>
<td>YA 79539</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 32</td>
<td>YA 79540</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 33</td>
<td>YA 79541</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 34</td>
<td>YA 79542</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 35</td>
<td>YA 79543</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 36</td>
<td>YA 79544</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 37</td>
<td>YA 79545</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 38</td>
<td>YA 79546</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 39</td>
<td>YA 79547</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'83' 30</td>
<td>YA 79548</td>
<td>1 December, 1983</td>
</tr>
<tr>
<td>'98' 1 PLUS</td>
<td>YA 84260</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>'98' 3 PLUS</td>
<td>YA 84261</td>
<td>16 July, 1984</td>
</tr>
<tr>
<td>WILD 1</td>
<td>YA 79608</td>
<td>5 December, 1983</td>
</tr>
<tr>
<td>WILD CARD</td>
<td>YA 79609</td>
<td>5 December, 1983</td>
</tr>
</tbody>
</table>
COST STATEMENT
WILLIAM T. DAWSON
GEOPHYSICAL, DIAMOND DRILLING, TRENCHING & ROAD BUILDING
BONANZA CREEK PROPERTY
15 October - 11 November 1984

GENERAL COSTS

FOOD & ACCOMMODATION
3 persons, 62 mandays @ $54.01 $3,348.58
FUEL 772.22
SUPPLIES 263.58
SHIPPING & POSTAGE 120.06
REPAIRS 308.75
FIELD TELEPHONE SERVICE 64.20
TAXIS 15.40
AIR FARES (CP-Air) 2 Vcr/Wth, 3,8 Nov 900.00
RENTALS 845.00
NORCAN 4wd PU, 1-11 Nov, 11 days @ $43 473.00
EZEKIEL Field/Camp Equipment, 62 mandays @ $6 372.00
CONSULTANT FEES, ARCHEAN ENGINEERING 495.00
REPORT PREPARATION 120.00
TOTAL GENERAL COSTS 10,518.09

ROAD BUILDING & TRENCHING

SALARIES & WAGES
2 persons, 7 man days @ $95.65 $669.55
BENEFITS @ 20% 133.91
CONTRACTOR WAYNE HAWKS D8K, 20-25 Oct 5,700.00
ASSAYS/ANALYSES - Chemex Labs 77.49
3 Rocks for Cu, Pb, Zn, Ag, W, Sn, Au
GENERAL COSTS APPORTIONED 7/57 X $10,518.09 1,291.69
TOTAL ROAD BUILDING & TRENCHING COST 7,872.65

I.P. HORIZONTAL LOOP ELECTROMAGNETIC & MAGNETIC SURVEY

CONTRACTOR GEOTERREX, 7 - 30 Sep 23,985.49
DIAMOND DRILLING COST

SALARIES & WAGES
- 3 persons, 50 mandays @ $95.65
 - Total: $4,782.50

BENEFITS @ 20%
- Total: $956.50

CONTRACTOR
- PHIL'S DIAMOND DRILLING, 464' @ $40
 - Total: $18,560.00

ASSAYS & ANALYSES, Chemex Labs
- 100 Core for Cu, Pb, Zn, Ag, Sn, W, Au
 - Total: $2,583.00

SUPPLIES (Mud, Rods, Bits)
- Food & Accommodation, 52 mandays @ $55
 - Total: $2,860.00

GENERAL COSTS APPORTIONED
- 50/57 X $10,518.09
 - Total: $41,168.39

TOTAL DIAMOND DRILLING COST
- Total: $73,026.53

COSTS APPORTIONED TO CLAIMS

<table>
<thead>
<tr>
<th>Claim</th>
<th>Trenching</th>
<th>Drilling</th>
<th>Geoterrex</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syndicate 23</td>
<td>633.88</td>
<td>$</td>
<td>$</td>
<td>633.88</td>
</tr>
<tr>
<td>Syndicate 24</td>
<td>933.88</td>
<td>26,794.94</td>
<td>1,042.85</td>
<td>28,771.67</td>
</tr>
<tr>
<td>Syndicate 31</td>
<td>633.88</td>
<td></td>
<td></td>
<td>633.88</td>
</tr>
<tr>
<td>Syndicate 39</td>
<td>633.88</td>
<td></td>
<td></td>
<td>633.88</td>
</tr>
<tr>
<td>Syndicate 46</td>
<td>633.88</td>
<td></td>
<td></td>
<td>633.88</td>
</tr>
<tr>
<td>Syndicate 54</td>
<td>633.88</td>
<td></td>
<td></td>
<td>633.88</td>
</tr>
<tr>
<td>Syndicate 60</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 61</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 62</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 71</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 72</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 73</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 74</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 75</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 76</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 77</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 78</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 79</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 80</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 81</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>Syndicate 82</td>
<td>633.88</td>
<td>1,042.85</td>
<td>1,042.85</td>
<td>1,042.85</td>
</tr>
<tr>
<td>"83" 26</td>
<td>4,258.80</td>
<td></td>
<td>4,258.80</td>
<td>4,258.80</td>
</tr>
<tr>
<td>"83" 27</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td></td>
</tr>
<tr>
<td>"83" 31</td>
<td>10,114.65</td>
<td>1,042.84</td>
<td>11,157.49</td>
<td></td>
</tr>
<tr>
<td>"83" 32</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td></td>
</tr>
<tr>
<td>"83" 32</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td></td>
</tr>
<tr>
<td>"98" 17</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td></td>
</tr>
<tr>
<td>"98" 22</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td></td>
</tr>
<tr>
<td>"98" 28</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td>1,042.84</td>
<td></td>
</tr>
<tr>
<td>Plinc 21</td>
<td>933.87</td>
<td></td>
<td></td>
<td>933.87</td>
</tr>
<tr>
<td>Plinc 22</td>
<td>933.87</td>
<td></td>
<td></td>
<td>933.87</td>
</tr>
<tr>
<td>Filler 8</td>
<td>633.87</td>
<td></td>
<td></td>
<td>633.87</td>
</tr>
</tbody>
</table>

TOTALS
- $7,872.65
- $41,168.39
- $23,985.49
- $73,026.53