A GEOLOGICAL REPORT ON THE
RON GROUPS NOS. 1, 2, & 3
139°38'W, 63°54'N
ELDORADO CREEK
CLAIM SHEET 115-0-14

G. J. McGinn, P.Eng.

November 4th, 1980
This report has been examined by the Geological Survey and is recommended for publication.

Amount of $16,000 recommended.

[Signature]

[Handwritten note: "Dumas quarry"]

[Handwritten note: "Conradson Quarry, Montana Mining Act"]

[Signature]

[Handwritten note: "Commissioner of Mines Territory"]
INTRODUCTION

During 1977, a privately funded prospecting syndicate was formed, and a grassroots prospecting program was carried out in the Klondike District of the Yukon Territory. As a result of this program, 40 quartz claims were staked on Eldorado Creek. A work program was initiated on the claims with a view to completing the formulation of a geologic-geochemical model for the property, which could be used, subsequently, to explore the claims for lode gold deposits. Various geochemical and geophysical tests were carried out with the intent of finding an effective means of exploring the property.

In early 1978, a 3,000,000 share company was incorporated and named Klond Exploration Co. Ltd. The quartz claims were transferred to the new company and shares were issued to the syndicate members on a previously contracted formula. In addition, a previous commitment was honored by offering existing shareholders the right to purchase further shares. Money from this rights offering was used to finance a small second phase of exploration during the summer and fall of 1978.

In late 1979, the company went public and sold 1,000,000 shares for a net return to the treasury of $375,000.00. A part of this money was used to finance an extensive program of line-cutting, surveying, V.L.F. surveying and electromagnetic surveying, and diamond drilling of encouraging anomalies.

Some of the publicly raised funds were spent in expanding on a second program which was started in 1978 on property owned by the Fry family, who leased subsurface (below 40') exploration and mining rights on eight placer
claims to Klondike Exploration. The claims lie above and below the confluence of Eldorado and Bonanza Creeks. The small program begun in 1978 (see Report dated January 2nd, 1979) was greatly expanded during the spring and early summer of 1980.

HISTORY

The Klondike district has a history dating back to the famed goldrush (stampede) of 1897-98. The reader is referred to Pierre Burton's recent book "Klondike" for background information on this momentous event.

The district developed an early and sustained reputation for being unpredictable. Eventually, it became clear that relatively few creeks (or parts of creeks) were rich, while the majority of the small watercourses contained little or no gold. The pay zones of rich creeks tended to vary widely from claim to claim in both the coarseness and the quantity of gold per lineal foot of stream channel. This ore habit was noted to be in direct contrast to many gold placer deposits, which tend to be rich and coarse near the upper reaches (often a definitive source) of the pay zone, and to be progressively poorer and finer downstream.

Eldorado Creek gravels were originally mined by underground methods. Subsequently, the lower part of the creek was dredged, and, still later, the upper part was re-mined using earth moving equipment. Today, small operators are again re-mining much of the creek using heavy equipment.

In 1973, an attempt was made to churn drill the stream bed of lower Eldorado Creek to explore for reported (see Report dated January 2nd, 1979) buried placers. These churn drilling attempts failed to reach planned depths due to severe drilling problems. A similar attempt in 1975,
using a rotary Becker Drill, also failed for similar reasons.

In 1978, a heavy rotary water drilling rig was brought in, and successfully completed three holes for Klon Exploration. This same rig was again employed during June, 1980 to drill 24 more holes.

GENERAL GEOLOGY

1) BEDROCK GEOLOGY

The Klondike gold fields are underlain in part by the Nasina Series and in part by the Klondike Series.

The Nasina Series consists of a structurally complex meta-sedimentary series consisting of dark grey rocks that grade from quartzites through micaceous quartzites to quartz mica schist. Occasionally, these rocks are intermingled with green chlorite schists, locally graphitic, and bands of crystalline limestones, phyllite, and shale.

The Klondike meta-sedimentary series consists principally of schists ranging from white to light grey and green; where chloritic they are medium to dark green. The series is described as sericite schist, but all gradations exist from hard flaggy, quartzitic varieties to very soft, strongly sheared, sericitic types.

Both the Nasina Series and the Klondike Series are cut by numerous barren quartz veins. Both series have been repeatedly intruded by large masses of foliated granite.

Here and there, tertiary sediments composed of shale, arkose, sandstone, tuffaceous sandstone and conglomerates to conglomerates overlie the sandstone.

Other rocks in the area include diabase dikes and occasional serpentinized ultrabasic rocks.

Placer gold deposits have been found in streams underlain by both the Nasina and the Klondike Series.
II) STRUCTURAL GEOLOGY

The Tintina Trench is the topographic expression of a huge, dextral, northwest trending fault with a net horizontal throw of some 250 miles. The movement began in Paleozoic time and continued into Tertiary time, with some 32 miles of movement during that era.

In the district southwest of the Trench, there are numerous major faults and structurally controlled lineaments (see M. W. Milner's Thesis) striking sub-parallel to parallel to the Tintina Trench. The writer was able to check a number of lineaments, and evidence, in the form of fracturing, brecciation and fault gouge indicates that many of them are also faults. These structures have traceable strike lengths of from five to fifty miles.

Many of the most profitable placer creeks either flow along fault valleys for some or all of their courses, or are only profitable below the point at which they cross one of these structures.

It appears very likely that this system of faults has acted as a hydrothermal plumbing system for the whole district.

A portion of the Klondike River and the area immediately south of it, including the drainage basins of Bonanza Creek and lower Hunker Creek, was uplifted some 50,000 years ago (McConnell, 1903). This uplift caused rapid down cutting of the respective stream channels, and resulted in isolating parts of the old stream channels (White Channel) as benches lying as much as 300 feet above the present channels. Thrust faults reported by Gleeson (1970, P.9) on the left limit (Adams Hill) of Bonanza Creek striking N 35° E and dipping 20° northwest with 30' to 40' of movement, and a similar thrust fault on the left limit (Paradise Hill) of Hunker Creek, together with information
supplied by Milner (1975, P.13) and information obtained during the 1980 field program, indicate that the uplift in this locality was caused by crustal thickening due to repetitive thrust faulting.

LOCAL GEOLoGY

The Ron Group of claims is underlain by the Klondike Meta-sedimentary Series, which includes cat's eye schist, sericite schist, quartz sericite schist, quartz-chlorite-sericite schist, chlorite schist, graphitic schist, and quartzites. Outcrop is scarce and the attitude of the schistosity does not, in general, conform with the original bedding planes.

The bedrock is cut by the Eldorado Creek Fault which strikes at 130° - 140° and dips to the southwest at 30° - 50°. The fault is generally traceable on aerial photographs in the area north of French Gulch. South of this point, ground disturbance due to mining renders interpretation of photos suspect. There appear to be several branches of the fault on the aerial photographs in the French Gulch locale, and this interpretation has been borne out by geophysical surveys during the 1980 season (see Geophysics below).

WORK PROGRAM

1) Linecutting - an additional 18.6 miles of baseline and crosslines were cut through dense bush and underbrush.

2) 100,100 feet of grid lines were surveyed using a Geonics EM-16 V.L.F. instrument. Numerous trials were also carried out (not recorded) on the claims and surrounding territory. Anomalous results were plotted
on Plate 4, after mathematical filtering, using the Fraser method.

The V.L.F. instrument has the advantage of being a cheap, fast means of reconnaissance surveying since it uses very low frequency naval radio stations as a transmitter, and hence is a very lightweight, one man operation. The instrument tends to return anomalous readings on conductive material, whether it is due to surface overburden or to conductors within the bedrock sequence. Consequently, of the numerous anomalies plotted on Plate 4, many were eliminated by subsequent surveying of anomalous areas with a large vertical loop McPhar SS-15 E-M instrument specifically designed to differentiate between overburden and bedrock conductors.

The SS-15 E-M survey covered much of the grid and included all promising V.L.F. surveys. The results are plotted on Plates 6, 7, and 8. The property proved to be difficult to survey, with conductors showing variations in conductivity, discontinuity, multiple parallel conductors, horsetailing branches, and a relatively flat dip. These problems were handled by shooting from different positions, from different ranges, and from different directions. Many lines were surveyed more than once, and only the most definitive of the 1000 and 5000 cycle profiles were plotted. In each instance, a number on the profile corresponds to a transmitter position number.

The conductive anomalies outlined included an 1100 foot anomaly, a 900 foot anomaly, a 5000 foot anomaly, and a 3500 foot anomaly. The main fault tends to produce horsetailing branches, which begin at the fault line and curve off to the southeast and die. Some of the branch anomalies are better conductors than the main fault zone and tend to mask the weaker principal conductor.
13,500 feet of crosslines were surveyed using a McPhar M-700 fluxgate magnetometer. A second M-700 magnetometer was used to monitor diurnal variations so that field readings could be fully corrected. Readings were taken at 50 foot intervals along lines spaced 200 feet apart. Care was taken to avoid taking readings within 50 feet of visible scrap metal or mining equipment.

This survey was carried out on Lower Eldorado Creek, and its purpose was to locate a magnetic anomaly along the creek axis which could be used as a guide for locating placer drill holes. Subsequent drilling (see below) indicated that the axis of a magnetic "low" anomaly was useful in locating drill holes, provided that the background differential was at least 100 gammas.

Profiles were resurveyed (see Jan., 1979 Report) on lines 113 and 101 to test electromagnetic anomalies on these lines, but no significant anomalies were found.

DIAMOND DRILLING

Hole EL-1 was drilled at grid location 148 + 25N and 13 + 00W at an Azimuth of 56° and a dip of -60° to a depth of 500 feet. The purpose of the hole was to intersect the source of an electromagnetic anomaly crossing French Gulch.

The hole intersected a series of faults and shears dipping with the schistosity towards the southwest at an estimated 40°. Much of the shearing to a depth of 300' contained secondary iron oxides, chloritization, and multiple quartz veins. Many of these zones were assayed, and initially some of them returned commercial grade values. Subsequent re-assaying and check assaying revealed that the initial assaying was in error, and that the samples contained only traces of gold.
Because of the fact that much of the first intersection was above the oxidized zone, Hole DDH EL-2 was drilled at a much lower altitude, further from the anomaly (see Plate 7) and in a vertical attitude. The second hole encountered a number of faults and veins. Like hole number EL-1, many of the shears were found to produce artesian water. Because of the lower altitude of the EL-2 collar, both the volume and the quantity were much higher than in the first hole, and was approximately 150 gallons per minute at a pressure of 90 p.s.i. The flow resulted in curtailing drilling before the planned depth was reached. However, the depth was considered to be sufficient to constitute an adequate test.

The water was tested and found to be sufficiently mineralized with sulphates to be a good conductor. It was concluded that the presence of sulphides, together with the shear zones, heavily saturated with electrolytic solutions, had caused the anomaly.

Hole EL-3 was drilled near line 113 in difficult terrain, and was designed to intersect a conductor along the main fault zone. This hole was stopped at 338 feet due to drilling problems. It again intersected multiple faults and shear zones, as well as a red mineral which was eventually determined to be fine particles of hematite encrusted in translucent mica. Initial assays returned interesting values in silver (see Appendix I), but subsequent assays by other assaying firms failed to confirm this, and the first assays are now considered to be in error.

Hole number EL-4 was drilled on a strong branch conductor, and was completed to a depth of 506.0 feet. This hole intersected hematite mineralization, and also returned interesting initial values in silver which subsequent assays failed to confirm.
Neither EL-3 nor EL-4 intersected artesian water, and neither intersected sulphides in quantities sufficient to cause a conductive anomaly. It is considered possible that hematite mineralization might have caused the anomalies, but this tentative conclusion is uncertain. Acute personnel and equipment problems with the contractor ruled out further drilling at this time.

In general, drilling problems were experienced in all holes, with core losses somewhat more severe than normal, and caving and/or water problems required full casing and a reduction in hole size from NQ to PQ in three of the four holes. There was also a persistent and systematic deviation of the holes to the point where all of them, regardless of starting angle, ended at approximately right angles to the schistosity. This persistent deviation, coupled with terrain problems, made it difficult to intersect conductors at planned depths.

PLACER DRILLING

Twenty-four 6" diameter holes were drilled on 5 section lines, using a rig capable of either tricone or down-hole impact drilling. The rig was successful in drilling either rock or gravel, whether wet or dry; and was equipped with a cyclone sampling device. This rig was chosen in preference to either a Becker rig or locally available churn drills because of the difficult and highly variable drilling conditions.

The cuttings from the drill were returned to the surface by compressed air, and the whole sample was collected, bagged, and labelled for every two feet of depth below the initial 20 feet of upper gravel. These samples were subsequently put through a Pan-O-Matic vibrating sluice box which was cleaned up every 6 feet of sample that was treated. A small fraction of the initial sample was also
kept for microscopic examination. The concentrates from each 6 foot run were hand-panned, and these also were examined, using a stereoscopic binocular Leitz microscope, at powers ranging from 10 to 200 magnifications.

A number of drilling and sampling problems were studied during this program, and were as follows:
1) Do the gold particles encountered come to the surface in the same proportions to drill cuttings as they occur? Studies of iron chips from the drill tools recovered from the concentrates indicates that recovery of metallic particles was satisfactory.
2) Is there a delay in the recovery of gold particles so that they come up with samples later than they should? Studies indicated that some late arrival was occurring when dry drilling was being done, and that many delayed particles tended to arrive subsequent to the encountering of heavy water flows.
3) A suspicion that upper gravels were entering the holes during the drilling of lower hole sections, was not confirmed when results obtained by tightly casing some holes returned results similar to adjoining loosely cased holes. However, it is considered possible that upper gravel (and its accompanying values) did contaminate the samples of holes 3 - 30 and 1380.
4) The efficiency of the Pan-0-Matic extractor was tested by salting a previously tested, barren sample with very fine (-50 mesh) placer gold. The machine recovered 87% of the salted gold, and would presumably recover a much higher percentage of normal-sized particles.

In general the drilling and sampling programs were believed to be satisfactory, but attempts to obtain comparative data were defeated when a test using a Hawker Siddely Sonic rig failed when the rig was unable to continue after encountering boulders at 26 feet of depth.
Subsequent to the field program, all gold particles were removed from the panning concentrates and weighed on an analytical balance. The weights in fractions of a gram, together with the values per cubic yard, are shown in tabulated form in Appendix II.

The best line of holes was on Section 203 + 45N in which all six holes carried either low values or colors. The best single hole was number 13-80 on section line 216 + 00N, but this hole is suspected of being in error due to probable upper gravel contamination. In general the values encountered were disappointingly low, and many holes carried neither values or colors.

SUMMARY

1. Extensive line-cutting and geophysical surveying was carried out on the Eldorado Creek property.

2. A number of conductive anomalies were outlined on the quartz claims.

3. No favourable results were obtained from the diamond drilling of some of the conductive anomalies.

4. Magnetic surveys were conducted over a portion of Eldorado Creek to outline a magnetic "low" anomaly which was drilled for buried placer deposits.

5. The drilling of 24 holes in five section lines on the magnetic anomaly did intersect some gold bearing material, but the amounts were insufficient and hence non-commercial.

RECOMMENDATIONS

1. It is recommended that this report be used to file for assessment work on the original claims for a further four years.
2. While further drilling on this property by Klon Exploration Co. Ltd. is not recommended, due to a very limited treasury, the writer reserves the right to recommend such drilling to other financing entities or groups who might be in a financial position which would enable them to take the heavy risk of engaging in more persistent drilling of the established anomalies.

3. It is recommended that Klon Exploration Co. Ltd. attempt to farm out the Eldorado Creek property to anyone willing to assume the risk that further diamond drilling would entail.

November 4th, 1980.

G. J. McGinn, Prof. Eng.
CERTIFICATE

1. I graduated with the degree of Batchelor of Geological Engineering at the University of Saskatchewan in 1956.

2. I have practised in the field of mining exploration, project management, and mining consulting since graduation.

3. I am a member of the Association of Professional Engineers of the Province of Ontario, and a member of the Association of Professional Engineers, Geologists & Geophysicists of Alberta.

4. My present address is at 2615 - 11th Avenue N.W., Calgary, Alberta.

5. I personally own approximately 261,000 shares in Klon Exploration Co. Ltd., and am the President of that company.

G. J. McGinn, Prof. Engineer
Core Log Diamond D. Hole EL-1
Location: Ron Claims Eldorado Creek, Yukon, Territories
148+25N, 13+00W
Azimuth 56° Dip 60° Depth 500 feet

0.0 - 32.0 Casing (subsequently cased deeper - 51.0° NW casing plus shoe left in hole).

32.0 - 61.0 Quartz sericite schist - grey-white banded - heavily weathered and stained with limonite schistosity @ 15°-40° to core axis bands and lenses at quartz up to 5 mm thick medium grain - broken core.

61.0 - 121.0 Shear zone - structurally disturbed locally drag folded - mainly quartz sericite schist heavily fractured in places, limonite common.

 61.0 - 90.0 Chlorite - could be hydrothermal chlorite associated with shear and faulting chlorite particularly intense from 75.0 to 76.0 feet (Sample 5876N, 75.0 - 77.0)

 96.4 - 97.0 Distorted and partly brecciated.

106.5 - 110.0 Partly brecciated, distorted - included 2" quartz vein @ 106.8.

113.0 - 121.0 Partly brecciated, disturbed partly chloritized - limonitic stains common, no sulphides.

121.0 - 147.0 Quartz sericite schist grey-white with slight greenish tinge schistosity @ 45° to 0.

147.0 - 148.0 Quartz vein - includes fragments of quartz sample 5877N.

148.0 - 197.0 Quartz sericite schist gradational change from light to dark grey with decrease in size of quartz blebs and grain size to fine grain schistosity @ 60° to 0. Occasional small quartz stringers.

197.0 - 198.2 Quartz vein - limonite on fractures.

198.2 - 217.8 Chlorite schist - broken core - fine grain dark greenish grey, distorted in part (drag folding) - limonite on joints and fractures - fractured in part - frequent thin quartz stringers.

217.8 - 225.0 Broken core - fractured and with frequent paper thin quartz plus one 3" vein - limonite abundant on fractures.

225.0 - 248.0 Quartz sericite schist - grey medium grain 1-2 mm quartz blebs have bluish tint is tending toward cats-eye schist schistosity @ 70° to core axis artesian water struck @ 240 (broken core, liminite etc.). Rods stuck @ 252 feet - drilled out with casing and reduced to BQ core from NQ 251.0 - 251.3 quartz vein.
248.0 - 248.9 Quartz vein - limonite stain.
248.9 - 252.0 Quartz sericite schist. N.B. Occasional blebs of pyrite beginning to occur in tighter portions of rock
251.0 - 251.3 quartz vein.
252.0 - 255.0 Lost core.
255.0 - 257.0 Quartz - chlorite schist - fine grain greenish grey - some structural disturbances (possibly faulting in lost core section) - limonite stain on joints and fractures.
257.0 - 287.5 Quartz - sericite schist - grey medium grain bands and lenses of quartz alternating with sericite peppered with blebs of quartz (1-2 mm) as before limonite continuing on fractures - occassional blebs of pyrite.
287.5 - 296.0 Fault fractured - hairline quartz veins numerous chloritized limonitic staining on joints 287.5 - 288.5 sample #5879 3.0' core lost.
296.0 - 209.7 Quartz sericite schist - some greenish tinge occassional hint of graphite in schist unable to confirm. Last limonite stain @ 300.0' cubes of pyrite now frequent.
309.7 - 312.5 Fault - quartz, breccia and mud seam.
Sample #1-1.6' quartz minor pyrite, some chlorite #5880N
Sample #2-1.2' breccia and mud seams minor pyrite #5881N
312.5 - 346.0 Quartz sericite schist - grey medium to fine grain - slight greenish tint - dark paper thin bands suggest graphite (unable to confirm) formational cubes of pyrite scattered through rock - fractures filled occassionally with very fine grain pyrite - some small quartz veinlets and paper thin stringers.
346.0 - 400.0 Fracture shear zone - numerous shears small quartz veins and stringers of pyritized joints.
359.3-369.3=principal fault quartz veins breccia .7
359.3-361.7=quartz vein breccia hydrothermal pyrite #5882N
361.7-364.2=quartz breccia and schist - hydro pyrite #5883N
364.2-364.7=quartz sericite schist - jointed and pyritized #5884N
364.7-366.0 = fractured #5885N
366.0-367.0 = breccia and quartz #5886N
400.0 - 417.6 Quartz - sericite schist 70°-90° to core axis scattered quartz veinlets and stringers, minor pyrite.
417.6 - 421.- Shearing, quartz veining and drag folding.
421.0 - 480.0 Quartz sericite schist - occasional small quartz veins and shears - pyrite on joints and fractures (sparse).

480.0 - 480.8 Quartz vein.

480.8 - 500.0 Quartz sericite schist 70°-90° to core 1, minor pyrite - occasional quartz veinlets and small shears, minor pyrite.

No dip tests - some suspicion of hole deviation indicated by decreasing angle of schistosity intersection.
<table>
<thead>
<tr>
<th>Number</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5876N</td>
<td>75.0 - 77.0</td>
</tr>
<tr>
<td>5877N</td>
<td>147.0 - 148.0</td>
</tr>
<tr>
<td>5878N</td>
<td>197.0 - 198.2</td>
</tr>
<tr>
<td>5879N</td>
<td>287.5 - 288.5</td>
</tr>
<tr>
<td>5880N</td>
<td>309.7 - 310.3</td>
</tr>
<tr>
<td>5771N</td>
<td>311.3 - 312.5</td>
</tr>
<tr>
<td>5882N</td>
<td>359.3 - 361.7</td>
</tr>
<tr>
<td>5883N</td>
<td>361.7 - 364.2</td>
</tr>
<tr>
<td>5884N</td>
<td>364.2 - 364.7</td>
</tr>
<tr>
<td>5885N</td>
<td>364.7 - 366.0</td>
</tr>
<tr>
<td>5886N</td>
<td>366.0 - 367.0</td>
</tr>
<tr>
<td>5897</td>
<td>288.5 - 290.0</td>
</tr>
<tr>
<td>5898</td>
<td>290.0 - 292.5</td>
</tr>
<tr>
<td>5899</td>
<td>292.5 - 293.0</td>
</tr>
</tbody>
</table>
DD Hole EL-2
Location: Eldorado, Creek, Yukon, Territories
140+00N 16+50W - 90°

Casing - cased to 56' Bedrock encountered at 46.0'

46.0 - 53.0 Weathered broken core - weathering much less to nil in remainder of hole.

53.0 - 144.2 Quartz - sericite schist - grey, medium grain, schistose bands and blebs of quartz alternating with sericite, possibly some graphite - bands .5 to 3 mm thick. Schistosity @ 30° to 0, steepens to 60° to 75° near bottom of hole some bluish (cats-eye) blebs. Frequent quartz concordant quartz stringers and some veins and veinlets on small structures, (fractures of faults) some chloritization on minor structures and within quartz veins indicates that mineral is hydrothermal.

120.5 - 122.0' Shearing, fracturing minor quartz veining, some chlorite alteration.

134.5 - 135.0 Quartz vein, some breccia and chlorite alteration.

141.0 - 144.5 Slight chloritization.

144.2 - 161.0 Fault zone - breccia, shears, fractures, quartz veins, chlorite alteration.
5.0' core last.

144.2 - 146.2 Chlorite and pyrite in schist highly contorted #5887N.

146.2 - 146.9 Quartz vein with breccia with chlorite and sulphides #5888N.

146.9 - 148.6 Silicified, partly breccinated, faulted, chloritized minor sulphide #5889.

148.6 - 149.7 Shattered and crumbling #5890.

157.2 - 158.1 Quartz vein #5891.

161.0 - 167.5 Quartz sericite schist grey medium to fine grain somewhat fractured, numberous hairline quartz veinlets.

167.5 - 170.5 Fault - quartz veins, mud and brecciated some chlorite and minor pyrite.

170.5 - 195.0 Quartz - sericite schist minor shearing and some fracturing quartz veins up to 1" and veinlets on fractures.
Shear zone quartz sericite schist grey-green, chloritized, frequent shears - rock fabric looks similar to previous section, chlorite color similar to hydrothermal chlorite in veins. Chloritized material has sparse pyrite and trace of a dark bronze, soft high metallic lustre mineral.

195.0 - 196.0 Chloritized, sheared #5892N.

196.0 - 197.9 Chloritized, sheared ruggy #5893N.

197.9 - 202.9 Chloritized quartz sericite schist #5894N fractured locally, sheared.

202.9 - 208.0 Hit artesian water @ 207 (see below) core sheared and somewhat fractured #5895N.

208.0 - 213.0 Sheared and distorted chloritized quartz sericite schist traces of bronze mineral and pyrite #5896.

225.5 - 228.5 Silicified, chloritized and quartz veined.

247.0 - Hole stopped because of heavy artesian flow of cased with NQ to 247.0 cored with BQ to 287.0 artesian flow built up again and stopped hole - last 10' of core lost - flow after removing rods and inner casing estimated @ 150 gal/min. Quartz sericite rock continued to 277.0 with chloritization decreasing. Angle of schist to core axis increased throughout from 30° to 60°-70° - no acid tests taken hole abandoned @ 289.0'.
EL-1 Sampling Key

<table>
<thead>
<tr>
<th>Number</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5887N</td>
<td>144.2 - 146.2</td>
</tr>
<tr>
<td>5888</td>
<td>146.2 - 146.9</td>
</tr>
<tr>
<td>5889</td>
<td>146.9 - 148.6</td>
</tr>
<tr>
<td>5890</td>
<td>148.6 - 149.7</td>
</tr>
<tr>
<td>5891</td>
<td>157.2 - 158.1</td>
</tr>
<tr>
<td>5892</td>
<td>195.0 - 196.0</td>
</tr>
<tr>
<td>5893</td>
<td>196.0 - 107.9</td>
</tr>
<tr>
<td>5894</td>
<td>197.9 - 202.9</td>
</tr>
<tr>
<td>5895</td>
<td>202.9 - 208.0</td>
</tr>
<tr>
<td>5896</td>
<td>208.0 - 213.0</td>
</tr>
<tr>
<td>5900</td>
<td>213.0 - 218.0</td>
</tr>
<tr>
<td>5901</td>
<td>218.0 - 223.0</td>
</tr>
<tr>
<td>5902</td>
<td>223.0 - 228.0</td>
</tr>
<tr>
<td>5903</td>
<td>228.0 - 233.0</td>
</tr>
<tr>
<td>5904</td>
<td>233.0 - 238.0</td>
</tr>
<tr>
<td>5905</td>
<td>243.0 - 247.0</td>
</tr>
<tr>
<td>5906</td>
<td>247.0 - 251.0</td>
</tr>
<tr>
<td>5907</td>
<td>251.0 - 256.0</td>
</tr>
<tr>
<td>5908</td>
<td>256.0 - 261.0</td>
</tr>
<tr>
<td>5909</td>
<td>261.0 - 266.0</td>
</tr>
<tr>
<td>5910</td>
<td>266.0 - 271.0</td>
</tr>
<tr>
<td>5911</td>
<td>271.0 - 277.0</td>
</tr>
<tr>
<td>5912</td>
<td>238.0 - 243.0</td>
</tr>
</tbody>
</table>
0.0 - 14.0 Casing.

14.0 - 83.0 Quartz chlorite sericite schist - greenish grey, medium to fine grain, schistosity @ 30°-40° to core axis - quartz in blebs and thin lenses .1 mm to 2mm thick.

44.0 - 47.0 Drag folded and probably faulted 2" and 6" veins in section.

52.0 - 66.0 Broken core, 40% recovery (core easily crumbled, probably faulted section is weathered with limonite stain on joints, fractures etc.).

83.0 - 89.0 Fault - broken core, breccia and quartz 40% recovery.

89.0 - 90.5 Quartz chlorite sericite schist - as before.

90.5 - 103.0 Fault zone - quartz, breccia and broken core (some limonitic gossan with pseudomorphs after pyrite in quartz breccia - broken core 50% core recovery).

103.0 - 108.0 Quartz chlorite sericite schist as before @ 40° to core axis.

108.0 - 111.0 Quartz vein (probably fault) - some wallrock fragments within vein.

111.0 - 128.0 Quartz chlorite sericite schist - as before. Angle to core axis steadily increasing - hole deviation probable.

128.0 - 130.0 Quartz vein wall fragments within.

130.0 - 151.5 Quartz chlorite sericite schist.

151.5 - 176.5 Chlorite schist - dark greyish green fine grained.

166.5 - 175.0 Fault - breccia, quartz veins fracture, 80% recovery.

176.5 - 184.0 Quartz chlorite sericite schist as before except no limonite (below weathered zone) - some drag folding.

184.0 - 190.0 Fault - four feet core lost. Sand from upper part of poorly case of hole allowed to settle and was cored and put in box.

190.0 - 207.0 Quartz sericite schist medium grain grey.
207.0 - 242.0 Fault zone - quartz, breccia and shattered rock - greenish grey to

237.0 - 240.0 Fault gauge, bluish black, sticky, unconsolidated - no mineralization except minor pyrite.

242.0 - 250.5 Quartz - chlorite sericite schist, somewhat fractured and disturbed.

250.5 - 261.5 Fault zone - shattered fractured, distorted, broken.

261.5 - 295.0 Quartz chlorite - sericite schist - greenish grey, medium grain strongly schistose @ approximately 60°-90° to 0.

264.0 - 279.5 Section contains small amounts (less than 1%) of a orange-red splendent metallic lustre mineral. The mineral is translucent under incident light and somewhat more red. Streak is pinkish as is the icturn drilling water (as pointed out by the drillers). The mineral is soft and fragile. Unable to identify but possibly from the pyargyrite group.

264.0 - 269.0

269.0 - 274.0

295.0 - 304.0 Shear zone, mudseams, fractured sheared, broken.

304.0 - 317.5 Quartz sericite schist minor pyrite.

317.5 - 318.5 Mud seam fault (fault gauge).

318.5 - 331.5 Quartz chlorite sericite - pale pink bands are apparently same mineral as sampled from 264.0 - 274.0 - bands extend across several rock types and are probably due to hydrothermal alteration - N.B. Sample if other zone is commercial.

331.5 - 334.5 Quartz vein (faulted).

334.5 - 338.0 Quartz sericite schist.

338.0 - Rods stuck in hole due to negligence of driller - hole abandoned.

NOTE: Peculiar red-orange mineral appears to be associated with very recent unconsolidated faults.
<table>
<thead>
<tr>
<th>Number</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5913</td>
<td>264.0 - 269.0</td>
</tr>
<tr>
<td>5914</td>
<td>269.0 - 274.0</td>
</tr>
</tbody>
</table>
DDH EL-4 60° Azimuth 15°
76+65N 3+40E

0.0 - 32.0 Casing (actually cased to 70').

32.0 - 133.0 Broken core, mud seams, fractured rock, ground rock - 40' core recovered - probably a series of faults (shear zone) - some definite blue fault gauge.

133.0 - 168.0 Quartz - sericite schist - grey, medium grain blebs and lenses of quartz 0.5 to 2mm thick - schistosity @ 60° to 70° to core axis.

133.0 - 151.5 Some reddish alteration on schist planes and joints - unable to confirm similarity with mineral in DDH EL-3. Looks like hematite but has coppery tint. N.B. Mineral confirmed in occasional spots immediately below 133.0 - 151.5 and down to 168.0

168.0 - 172.0 Fault zone - crushed, broken with mud seams.

172.0 - 182.5 Quartz vein some inclusions no minimum.

182.5 - 191.0 Fault zone includes.

191.0 - 193.0 Quartz vein.

193.0 - 233.0 Quartz sericite schist - some fracturing and shearing - some red alteration - probably from red mineral but generally looks like coppery hematite unless broken on a fresh surface and carefully examined - red mineral not confirmed.

233.0 - 254.0 Fault zone - broken core, fractured, brecciated mud seams, some short sections of unbroken quartz sericite schist.

233.0 - 238.0 3 feet chips of mud recovered has red (coppery) colored hematite stain - could be altered and crushed orange red material - sample.

254.0 - 279.5 Quartz sericite schist schistosity @ 60° to 0, some shearing 279.0 reduced hole size from NQ to BQ due to mud problems - cased with NQ rods.

279.5 - 307.0 Fault - quartz and broken core plus drag folded and fractured sericite schist.

307.0 - 336.5 Quartz sericite schist some small shears.
336.5 - 351.0 Fault zone crushing and drag folding fracturing quartz veining, brecciation.

351.0 - 365.0 Quartz - sericite schist - somewhat distorted - small shears and quartz veins, frequent fractures, red alteration - could be orange red mineral in part.

365.0 - 367.0 Fault - red orange mineral seen in this section (pink water in drilling return) - somewhat hematitic stains (coppery).

367.0 - 372.0 Quartz sericite schist - some drag folding and fracturing.

372.0 - 378.0 Fault zone - quartz and ground schist 3' core missing.

378.0 - 385.0 Quartz sericite schist - fine grained grey shistosity @ 70° to 0.

385.0 - 388.0 Shear zone.

388.0 - 424.0 Quartz sericite schist with blebs and lenses, medium grain some drag folding and shearing.

424.0 - 434.0 Quartz vein - some schist inclusions.

434.0 - 435.0 Quartz sericite schist.

435.0 - 436.5 Quartz vein.

436.5 - 449.0 Quartz sericite schist.

449.0 - 450.0 Quartz vein.

450.0 - 478.0 Quartz sericite schist, minor shearing.

478.0 - 479.2 Quartz vein.

429.2 - 506.0 Banded quartzite - 60%-70% quartz in bands 1/8"-1" wide with quartz sericite schist between.

 Some red (hematitic) staining - very hard.

506.0 End of Hole.
<table>
<thead>
<tr>
<th>Number</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5915</td>
<td>172.0 - 177.0</td>
</tr>
<tr>
<td>5916</td>
<td>177.0 - 182.5</td>
</tr>
<tr>
<td>5917</td>
<td>233.0 - 238.0</td>
</tr>
<tr>
<td>5918</td>
<td>365.0 - 367.0</td>
</tr>
<tr>
<td>5919</td>
<td>218.3 - 221.7</td>
</tr>
<tr>
<td>5920</td>
<td>289.0 - 299.0</td>
</tr>
<tr>
<td>5921</td>
<td>299.0 - 303.0</td>
</tr>
<tr>
<td>5922</td>
<td>303.0 - 306.0</td>
</tr>
<tr>
<td>5923</td>
<td>306.0 - 308.0</td>
</tr>
<tr>
<td>5924</td>
<td>308.0 - 312.0</td>
</tr>
<tr>
<td>5925</td>
<td>312.0 - 318.5</td>
</tr>
<tr>
<td>5926</td>
<td>351.5 - 352.0</td>
</tr>
<tr>
<td>5927</td>
<td>352.0 - 356.5</td>
</tr>
<tr>
<td>5928</td>
<td>356.5 - 360.5</td>
</tr>
<tr>
<td>5929</td>
<td>360.5 - 365.0</td>
</tr>
<tr>
<td>5930</td>
<td>478.5 - 482.0</td>
</tr>
<tr>
<td>5931</td>
<td>482.0 - 486.5</td>
</tr>
<tr>
<td>5932</td>
<td>486.5 - 491.0</td>
</tr>
<tr>
<td>5933</td>
<td>491.0 - 496.0</td>
</tr>
<tr>
<td>5934</td>
<td>496.0 - 498.5</td>
</tr>
<tr>
<td>5935</td>
<td>498.5 - 501.0</td>
</tr>
<tr>
<td>5936</td>
<td>501.0 - 503.5</td>
</tr>
<tr>
<td>5937</td>
<td>503.5 - 505.0</td>
</tr>
</tbody>
</table>
Drilling Notes

22.0 - Bedrock

56.0 - 86.0 Water brownish and alternating to greenish grey. Water flow fairly heavy and increasing. Drilling alternately hard and soft but fairly rapid.

86.0 - 100.0 Rock - harder and steady

Total Depth 100.0'

MICROSCOPIC EXAMINATION OF WASHED SAMPLES OF CONCENTRATES

20.0 - 22.0 Chips of quartz chlorite schist with minor quartz, minor sand grains.

22.0 - 24.0 Quartz chlorite mica schist fragments, some white quartz fragments - sample feels gritty and particles look angular, i.e. rock chips.

24.0 - 26.0 As before - some imonitic staining on a few fragments.

26.0 - 30.0 Rock chips quartz - chlorite mica schist minor oxides. Pan concentrate contains magnetite and pyrite and small spherical balls of metal (iron grey) variable size, attracted by magnet - believed to be fused iron produced by cutting torch - some of these balls are broken and appear to have been partially hollow.

30.0 - 34.0 As before. Pan concentrate - pyrite and magnetite (less than before) in sample - a few iron balls.

34.0 - 38.0 Gritty fragments - same rock concentration is mainly pyrite with less magnetite of a few balls.

38.0 - 42.0 Same rock - fragments are sharp and gritty - increase in white quartz chips concentrate - magnetite with less pyrite.

42.0 - 46.0 Quartz sericite schist - angular gritty chips some limonite staining, minor quartz concentrates - chiefly magnetite with some pyrite.

46.0 - 50.0 Quartz sericite schist - rock chips minor portion stained with limonite minor quartz. Concentrate - black sand - chiefly magnetite, some pyrite.
<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0 - 54.0</td>
<td>Quartz chlorite sericite schist - rock chips, gritty minor iron staining 10-20% quartz chips. Concentrate - mainly magnetite, some pyrite.</td>
</tr>
<tr>
<td>54.0 - 58.0</td>
<td>Mainly schist fragments, some quartz limonite staining common, less gritty, possibly some sedimentary grains.</td>
</tr>
<tr>
<td>58.0 - 62.0</td>
<td>Fragments and grain appear to be diverse - sub-angular to rounded grains common - limonite stains common, alteration and diverse origin at particles appears likely - grains feel less gritty and more sandy in fingers. Concentrate - pyrite decreased, magnetite increased to 90-95% of heavies.</td>
</tr>
<tr>
<td>62.0 - 66.0</td>
<td>Variegated fragments and pebbles - some sub-angular to rounded particles - weathered and stained - diverse appearance, semi-gritty in fine portion. Concentrate - pyrite and magnetite - fine rock grains contain some distinctly rounded particles.</td>
</tr>
<tr>
<td>66.0 - 70.0</td>
<td>As before. Concentrate - magnetite of pyrite.</td>
</tr>
<tr>
<td>70.0 - 74.0</td>
<td>Particles variegated, frequently limonitic staining - look diverse, feel semi-gritty some sub-angular and rounded grains. Concentrate - heavies principally magnetite, minor pyrite.</td>
</tr>
<tr>
<td>74.0 - 78.0</td>
<td>Rock fragments - diverse origin - variegated frequent limonitic staining, quartz content substantial - grains angular to sub-angular to semi-rounded. Concentrate - modest amounts of magnetite and pyrite.</td>
</tr>
<tr>
<td>78.0 - 82.0</td>
<td>Predominately grey quartz mica schist with fewer fragments stained with limonite - section is possibly boulders. Concentrate - heavies chiefly may with some pyrite.</td>
</tr>
<tr>
<td>82.0 - 86.0</td>
<td>Fragments are chiefly quartz sericite schist with some iron standard fragments - sample feels gritty and harsh - boulders or bedrock. Concentrate - magnetite and pyrite about equal.</td>
</tr>
<tr>
<td>86.0 - 90.0</td>
<td>Chiefly quartz - sericite schist - with quartz minor stained particles - gritty (harsh). Concentrate - mainly magnetite and pyrite.</td>
</tr>
<tr>
<td>90.0 - 94.0</td>
<td>Mainly schist fragments as before - minor amount of iron stained particles. Concentrate - magnetite and pyrite. N.B. No attempt made to identify black non-magnetics which are almost always in samples.</td>
</tr>
</tbody>
</table>
Concentrate - pyrite and magnetite.

94.0 - 98.0 Principally quartz - sericite schist with some particles stained with limonite - feels gritty and harsh. Concentrate - pyrite predominant heavy.

98.0 - 100.0 As before.

100.0 - End of Hole
Rotary Drill Hole 2-80

Drilling Notes

<table>
<thead>
<tr>
<th>Depth Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0 - 22.0</td>
<td>Bedrock</td>
</tr>
<tr>
<td>50.0 -</td>
<td>Water turned brownish and heavy flow.</td>
</tr>
<tr>
<td>72.0 - 79.0</td>
<td>Fast drilling and heavy flow. Greenish samples noted below 76' when sluicing.</td>
</tr>
<tr>
<td>60.0 - 20.0</td>
<td>No sampling.</td>
</tr>
<tr>
<td>20.0 - 24.0</td>
<td>Angular to sub-angular to rounded variegated, some iron stained particles. Concentrate - some magnetite, minor pyrite, some iron balls.</td>
</tr>
<tr>
<td>24.0 - 28.0</td>
<td>Angular to sub-angular to rounded particles, chiefly quartzite with some schist - variegated, some iron-ferruginous staining - gritty and harsh to touch. Concentrate - magnetite, very minor pyrite - small black balls throught to be product of cutting torch numerous times.</td>
</tr>
<tr>
<td>28.0 - 32.0</td>
<td>Angular to sub-angular to rounded - variegated quartzite and schist and quartz fragments. Concentrate - trace of pyrite, no magnetite - many tiny black spherical balls (cutting torch) that are attracted to magnets.</td>
</tr>
<tr>
<td>32.0 - 36.0</td>
<td>Angular to sub-angular to rounded, diverse quartzite, quartz and schist. Concentrate - trace of pyrite, no magnetite, some iron balls.</td>
</tr>
<tr>
<td>36.0 - 40.0</td>
<td>Angular to sub-angular to rounded, diverse as before, sample feels gritty. Concentrate - trace pyrite - no magnetite, iron ball broken by tweezers - hollow inside - very likely welding product (or cutting).</td>
</tr>
<tr>
<td>40.0 - 44.0</td>
<td>As before. Concentrate - trace of pyrite, no magnetite, iron balls and metal from drill bits etc. (as usual).</td>
</tr>
<tr>
<td>44.0 - 48.0</td>
<td>Angular to sub-angular to semi-rounded quartzitic, schist and quartz, some iron stained particles. Concentrate - trace pyrite, no magnetite, iron-ferruginous balls decreasing.</td>
</tr>
<tr>
<td>Interval</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>48.0 - 52.0</td>
<td>Angular to sub-angular to semi-rounded particles similar to before but increasing numbers are iron stained. Concentrate - much pyrite, some pyrhotite and magnetite sample color darkened considerably.</td>
</tr>
<tr>
<td>52.0 - 56.0</td>
<td>Looks like sediments - most particles altered with iron, staining - particle assortment does not appear to be different than before sample feels less gritty. Concentrate - much pyrite, some magnetite, some balls. N.B. Since cutting and welding finished in area of 22-30', persistence of balls indicates they are either not welding product or the hole is clearly cuttings very poorly, note sparse grain must be modest because balls are hollow - ball incident decreasing - dark color.</td>
</tr>
<tr>
<td>56.0 - 60.0</td>
<td>Angular to sub-angular to rounded quartzite, schist and quartz - high proportion iron stained. Concentrate - pyrite, pyrhotite and magnetite plus iron cuttings (dark color).</td>
</tr>
<tr>
<td>60.0 - 64.0</td>
<td>As before. Concentrate - as before, dark color.</td>
</tr>
<tr>
<td>64.0 - 68.0</td>
<td>As before - iron-ferruginous stained particles about 50%. Concentrate - as before (pyrite, pyrhotite, magnetite and iron).</td>
</tr>
<tr>
<td>68.0 - 72.0</td>
<td>No change (angular to sub-angular to rounded, iron stained 50%) Concentrate - many flashing axal faces since 50' make concentrate look like product of fresh rock, rather than of sediments much magnetite.</td>
</tr>
<tr>
<td>72.0 - 76.0</td>
<td>As before. Concentrate - magnetite and some pyrhotite and pyrite - dark, axtal faces flashing.</td>
</tr>
<tr>
<td>76.0 - 80.0</td>
<td>As before. Concentrate - as before.</td>
</tr>
<tr>
<td>80.0 - 84.0</td>
<td>Particles are fragments of quartz - sericite schist - still some oxidized particles from section above. Concentrate - magnet tends to pick up principally pyrhotite with some magnetite - sample darker and glistening.</td>
</tr>
<tr>
<td>84.0 - 90.0</td>
<td>Quartz - mica schist particles, some quartz and some stained particles. Concentrate - pyrite, pyrhotite and magnetite.</td>
</tr>
</tbody>
</table>
90.0 - 100.0 Looks like quartz sericite schist - still some rounded and stained particles (from upper section). Concentrate - pyrite, phrhotite and magnetite, dark flashing sample.
Rotary Hole 3-80
Drilling Notes

N.B. Collar 5' higher than first and holes.
Bedrock @ 27'
30' Back in gravel. Fast drilling to 76.0 - no serious Bedrock to 120'
N.B. Samples looked and felt like sediments to the bottom with a
possible change at 116' during sluicing.

MICROSCOPIC

0.0 - 20.0 No sampling.

20.0 - 24.0 Rounded, semi-rounded and angular particles (upper
channel), weathered particles diverse.
Concentrate - loaded with iron balls.
N.B. No cutting of casing at this depth - electric
welding probably but poor candidate for producing these
balls - small ones jet black, shiney, large ones solid
metal - hard (cut one with difficulty using
side-cutters). Some pyrite (minor).

24.0 - 28.0 Rounded to semi-rounded to angular to sub-angular,
weathered variegated.
Concentrate - minor pyrite, magnetite portion chiefly
iron balls, less numberous than last sample.

28.0 - 32.0 As before.
Concentrate - trace pyrite - iron balls chief magnetite
portion.

32.0 - 34.0 Rounded sub-angular to angular variegated, weathered.
Concentrate - loaded with iron balls.

36.0 - 40.0 As before.
Concentrate - loaded with iron balls from extremely
small to 1-2 mm.

40.0 - 44.0 Rounded to sub-angular to angular variegated frequent
limonite stain (weathered) brownish grey.
Concentrate - loaded with iron balls
N.B. The balls appear to be magnetic and to cling
together when prodded.

44.0 - 48.0 As above, but limonite staining perhaps decreased.
Concentrate - loaded with iron balls.

48.0 - 52.0 Semi-rounded to sub-angular to angular variegated,
substantial proportion of particles iron stained.
Concentrate - iron balls less plentiful.

52.0 - 56.0 As before.
Concentrate - black balls still present but somewhat
sparse.
Semi-rounded to sub-angular to angular, mostly iron stained, variegated. Concentrate - trace pyrite, trace magnetite, some iron balls.

As before, most particles iron stained. Concentrate - minor pyrite and magnetite, some iron balls.

No change. Concentrate - pyrite increasing, minor magnetite, some iron balls.

No change, particles look poorly sorted very poorly rounded sediments. Many have pale iron stain and look weathered. Concentrate - pyrite and magnetite increasing still some iron balls.

No change. Concentrate - magnetite and occasional iron balls.

Particles still appear variegated and diverse, vary degrees of sphericity. Concentrate - fine rock portion of sample has yellowish - green appearance. Trace pyrite, some magnetite, a few balls.

Same - may be some decrease in weathering. Concentrate - same yellowish green appearance - trace pyrite, magnetite, some balls.

Rounded, semi-rounded and angular particles many iron stained looks and feels like sand and gravel. Concentrate - sharp increase in pyrite - sample glitters, sample grey.

No change in main sample. Concentrate - much pyrite, some magnetite - sample greenish grey heavy minerals fresh.

Sample still not changed although there is a portion of quartz - chlorite sericite schist emerging. Concentrate - fine portion of rock overall greyish green but individual pieces multi-colored and diverse much pyrite and some pyrhotite and magnetite.
Bedrock @ 25'
Water @ 48'
Gravel from 48 to 60'
Depth 100'

MICROSCOPIC

0.0 - 20.0 No sample.
20.0 - 24.0 Clay and gravel microscopic - black sand (magnetite)
24.0 - 28.0 Gravel black sand - magnetite and pyrohite.
28.0 - 32.0 Oxidized, variegated, probably gravel.
 28.0 - 32.0 Concentrate - black sand - mainly
tarnished pyrohite and iron balls,
 probably some magnetite.
32.0 - 36.0 Variegated, frequent oxidation, some particle rounding -
 probably gravel.
 Concentrate - pyrohite, some magnetite and pyrite
 sample is black as are all samples from this hole.
36.0 - 40.0 Mainly quartz - sericite schist chips - some oxidized
 particles, some modest rounding.
 Concentrate - black sand - pyrohite, magnetite and
 pyrite.
40.0 - 44.0 Material brownish - oxidized - sample dirty.
 Concentrate - black sand partly oxidized (blackened to
 dark bronze) pyrohite, magnetite and pyrite.
44.0 - 48.0 Sample dirty - brownish possibly frozen gravel or
 perhaps bedrock.
 Concentrate - black sand - principally pyrohite with
 magnetite and trace pyrite.
48.0 - 52.0 Looks like gravel (oxidized, variegated).
 Concentrate - black sand as before.
52.0 - 56.0 Looks like gravel (oxidized variegated).
 Concentrate - black sand, pyrohite, pyrite, magnetite
 (pyrite increasing, more glitter i.e. early samples more
 earthy).
56.0 - 60.0 Possibly bedrock - variegation decrease oxidation
 decrease.
 Concentrate - pyrohite, magnetite, pyrite.
60.0 - 64.0 Looks like rock chips - further decrease in oxidized chips - fresh chips uniform quartz - sericite schist. Concentrate - black sand - pyrhotite, magnetite, pyrite.

64.0 - 68.0 Quartz, sericite schist still some oxidized particles, fine material feels like sand (possibly due to sericite) light grey in appearance. Concentrate - pyrhotite (tarnished) magnetite and pyrite. Black sand.

68.0 - 72.0 Mainly quartz - sericite schist - light grey - mainly particles have outlines suggesting broken grains but no such grains were found unbroken. Bulk of sample looks like freshly broken rock fragments (cannot be certain). Concentrate - black sand - pyrhotite, magnetite and pyrite.

72.0 - 76.0 N.B. All samples from this hole tend to pack in bags and become semi-solid. Quartz - sericite schist - still some weathered particles in sample as before. Concentrate - black sand - pyrhotite, pyrite and magnetite.

76.0 - 80.0 As before, still some weathered particles and some rounding - fines feel sandy - sample pale grey. Concentrate - pyrhotite, pyrite and magnetite.

80.0 - 84.0 Quartz - sericite - schist - darker grey, less weathered particles, fewer sub-angular ones. Concentrate - pyrhotite and pyrite, magnetite - still black sand.

84.0 - 90.0 As before, probably schist but not certain. Concentrate - as before (black sand).

90.0 - 96.0 As before. Concentrate - black sand as before.

96.0 - 100.0 Quartz sericite schist - still some staining and some rounding - uncertain. Concentrate - as before.
Rotary Hole 5-80

22.0 - Bedrocks

32.0 - Water - samples very muddy - boulders and gravel mixed.

56.0 - Water changed to grey.

MICROSCOPIC

0.0 - 20.0 No sampling.

20.0 - 26.0 Gravel variegated, weathered. Concentrate - magnetite, goethite, mine - some gold flake - pyrite (black sand).

26.0 - 32.0 Variegated, weathered sub-angular to angular. Concentrate - black sand magnetite, pyrhotite.

32.0 - 38.0 Variegated, weathered sub-angular to angular. Concentrate - black sand - iron balls, pyrhotite, magnetite, pyrite.

38.0 - 44.0 Variegated, weathered, gravelly. Concentrate - mostly iron balls pyrhotite, magnetite, pyrite.

44.0 - 50.0 Variegated but less so than previous sample - iron staining also decreased.

50.0 - 56.0 Variegated, weathered - looks gravelly. Concentrate - black sand, pyrhotite, magnetite, pyrite (trace).

56.0 - 62.0 Schist - increase in rock chips to principal portion, decrease in weathered particles. Concentrate - sharp increase in pyrite to pyrite - pyrhotite - magnetite.

62.0 - 68.0 Quartz - sericite schist - grey to greenish grey, minor weathered particles. Concentrate - pyrite, minor pyrhotite, magnetite.

68.0 - 74.0 Schist as before. Concentrate - black sand mainly pyrhotite, remainder of sample pyritic.

74.0 - 80.0 Schist as before - grey, angular. Concentrate - magnetite, portion mainly pyrhotite (good sample) remainder mainly pyrite.

80.0 - 86.0 As before.
Concentrate - black sand - mainly pyrhotite with some magnetite, non-magnetic portion mainly pyrite.
N.B. Pyrhotite is very dark variety - suggest assaying.

86.0 - 92.0 As before.
Concentrate - magnetite portion black sand with dark variety of pyrhotite. Other portion mainly pyrite.

92.0 - 100.0 As before.
Concentrate - as before.
Rotary Hole 6-80
Drilling Notes

22.0 - Water - appears to be lack of false or upper bedrock in this position. Sediments or slabs 56.0' - probably bedrock thereafter to 90'.

MICROSCOPIC

0.0 - 20.0 No sampling.

20.0 - 24.0 Gravel.
Concentrate - magnetite - black balls, brown chips and magnetite. Non-magnetic - brown sand, minor pyrite.

24.0 - 28.0 Gravelly - variegated, oxidized etc.
Concentrate - black balls.

28.0 - 32.0 Gravelly - as before.
Concentrate - magnetite - black balls, brown chips and magnetite.

32.0 - 36.0 Gravelly, as before.
Concentrate - magnetite - brown chips and black balls. Non-magnetic - brown sand, minor pyrite.

36.0 - 40.0 Gravel - as before.
Concentrate - magnetic black balls and brown chips. Non-magnetic - brown sand and pyrite.

40.0 - 44.0 Gravel as before.

44.0 - 48.0 Gravel as before.

48.0 - 52.0 Gravel as before.

44.0 - 50.0 Concentrate - magnetic black balls and brown chips.
Non-Magnetic - brown sand and pyrite.

52.0 - 56.0 Gravelly

50.0 - 56.0 Concentrate - magnetic black balls and brown chips minor magnetite.
Non-magnetic - brown sand, minor pyrite.

56.0 - 60.0 Gravel and schist mixed.

60.0 - 64.0 Schist - some gravel still.

56.0 - 62.0 Concentrate - magnetic black balls and pyrhotite
Non-Magnetic - pyrite.

64.0 - 68.0 Quartz - sericite schist - grey.
62.0 - 68.0 Concentrate - magnetic pyrhotite.
 Non-magnetic - pyrite.

74.0 - 80.0 Schist of quartz.
 Concentrate - as before.

80.0 - 86.0 Schist of quartz.

74.0 - 80.0 Concentrate - magnetite darkly tarnished pyrhotite.
 Non-magnetic - mainly pyrite.

86.0 - 90.0 Schist of quartz as before.
 Concentrate - magnetite - pyrhotite.
 Non-magnetic - pyrite (minor).
Rotary Hole 7-80
Drilling Notes

22.0 Bedrock

32.0 - Water - samples very muddy (brown) - boulders and gravel mixed.

56.0 - Changed to grey.

MICROSCOPIC

0.0 - 20.0 No samples.

20.0 - 26.0 Variegated, weathered - sub-angular to angular probably boulders and gravel. Concentrate - magnetite

26.0 - 32.0 Variegated, weathered sub-angular to angular. Concentrate - minor magnetite.

32.0 - 38.0 Variegated, weathered - looks like gravel. Concentrate - minor magnetite.

38.0 - 44.0 Variegated, weathered - looks like gravel. Concentrate - mostly fragments from drill bit, trace magnetite, one flake gold.

44.0 - 50.0 Variegated, weathered looks slightly less like gravel (more rock chips). Concentrate - minor magnetite, trace pyrite.

50.0 - 56.0 Variegated and some weathering (decreased from previous sample - boulders or bedrock). Concentrate - magnetite portion mainly metal cuttings, trace magnetite, minor pyrite.

56.0 - 62.0 Schist - still magnetite stained fragments and particles. Concentrate - heavy pyrite increase minor pyrhotite, trace magnetite.

62.0 - 68.0 Schist - as before. Concentrate - heavy pyrite minor pyrhotite, trace magnetite.

68.0 - 74.0 Quartz - sericite schist - a few weathered particles. Concentrate - heavy pyrite, minor pyrhotite, magnetite.

74.0 - 80.0 Quartz - sericite - schist. Concentrate - as before.
80.0 - 86.0 As before.
 Concentrate - as before.
86.0 - 90.0 As before.
90.0 - End of Hole
Rotary Hole 8-80
Drilling Notes

Drilling on hydraulic outwash - wood chips from 37' (possibly old pre-wash surface).

40.0 - 44.0 Clay and water with gravel.
48.0 - Black ooze with gravel - still fully cased.
54.0 - 56.0 No sample - drilling slow, fully cased - possibly bedrock.
55.0 - Driller reports bedrock.
58.0 - 60.0 Rock chips - dry - condition continues to 74.0 feet.
74.0 - Hit water - flow increasing to 78.0.
90.0 - Heavy water flow.
92.0 - 95.0 Brown water.
100.0 - Brown water - heavy flow.
130.0 - Hole stopped.

MICROSCOPIC

0.0 - 20.0 No sampling.
20.0 - 26.0 Gravel - fully weathered.
Concentrate - magnetite - magnetite and iron chips.
Non-magnetite - limonite and goethite, trace pyrite.
26.0 - 32.0 Gravel - as before.
Concentrate - magnetite - magnetite and iron chips.
Non-magnetite - goethite, limonite and pyrite.
32.0 - 38.0 Gravelly - as before
Concentrate - magnetite - magnetite, black balls and iron chips.
Non-magnetite - pyrite, limonite, goethite.
38.0 - 44.0 Gravel - as before - variegated, weathered.
Concentrate - magnetite, magnetite, iron chips.
Non-magnetite - pyrite, limonite.
44.0 - 50.0 Gravel
Concentrate - magnetite - magnetite, black balls, iron chips.
Non-magnetite - pyrite, limonite, goethite.
- 2 -

50.0 - 56.0 Gravel.
Concentrate - magnetite - magnetite, black balls, iron chips.
Non-magnetite - pyrite, goethite, limonite.

56.0 - 62.0 Quartz - sericite - chlorite schist.
Concentrate - magnetite - black balls, iron chips, minor magnetite.
Non-magnetite - pyrite (much larger sample).

62.0 - 68.0 As before.
Concentrate - as before.

68.0 - 74.0 As before.

74.0 - 80.0 As before.

80.0 - 86.0 As before.

86.0 - 92.0 As before.

92.0 - 98.0 As before.

98.0 - 104.0 As before.

104.0 - 110.0 As before.

110.0 - 116.0 As before.

116.0 - 122.0 As before.

122.0 - 130.0 As before.

130.0 - End of Hole
Drill Hole 9-80
Drilling Notes

Bedrock at 44.0' (heavy water flow, brown muddy water).

56.0 - Water went grey.
58.0 - Brown again - drilling steady and slow.
75.0 - Heavy increase in water flow.
78.0 - Water increasing steadily, drilling uneven.

90.0' deep

MICROSCOPIC

20.0 - 24.0 Gravel - variegated many iron stained rounded - sub-angular to angular gravel has very poor sphericity.
24.0 - 26.0 As before. Concentrate - 20.0 - 26.0' Some fresh pyrite - mostly pseudomorphs after pyrite.
26.0 - 28.0 As before.
28.0 - 30.0 As before.
30.0 - 32.0 As before. Concentrate - 26.0 - 32.0 pyrite and limonite and iron balls.
32.0 - 34.0 Gravel - particles semi-angular to any variegated, many stained with iron.
34.0 - 36.0 Same 32.0 - 38.0 Concentrate - pyrite and iron balls.
36.0 - 38.0 Same - slightly less limonite stain.
38.0 - 40.0 Sample is a mixture of gravel and fragments of black diabasic dyke.
40.0 - 42.0 Sample muddy - yellowish brown.
42.0 - 44.0 Variegated less iron staining (50%). 38.0 - 44.0 Concentrate - pyrite and iron balls.
44.0 - 46.0 Some iron stained sediments and chips of grey schist.
46.0 - 48.0 Sediments mixed with black dyke chips.
48.0 - 50.0 Sediments mixed with chips of diabase.
44.0 - 50.0 Concentrate - pyrite.

50.0 - 52.0 Mixture of sediments and rock chips.
52.0 - 54.0 Same

54.0 - 56.0 Proportion of sediments decreasing - probably in quartz
sericite schist - 50.0-56.0 - large sample glittering
pyrite.

56.0 - 58.0 Quartz - sericite - schist, minor sediments.
58.0 - 60.0 Same

60.0 - 62.0 Looks like sediments again - over 50% stained particles
- diverse.

62.0 - 64.0 Quartz sericite schist - many stained particles and like
fragments etc. but probably due to sluffing 56.0 - 62.0
large pyrite sample.

64.0 - 68.0 Schist - same sediments but probably sluff.
62.0 - 68.0 large pyrite sample.

68.0 - 70.0 As before.
70.0 - 72.0 Schist and quartz (50%) minor sediments.

72.0 - 74.0 Schist - minor sediments.
68.0 - 74.0 large pyrite sample.

74.0 - 76.0 Schist minor sediments.

76.0 - 78.0 74.0 - 78.0 large pyrite sample.
78.0 - 80.0 Schist

80.0 - 82.0 Sediments and schist - probably hole.
82.0 - 84.0 Sluffing (no way to tell).

84.0 - 86.0 Material looks like sediments whitish grey chips mixed
with weathered chips.
80.0 - 86.0 Concentrate - much smaller pyrite sample one
gold flake.

86.0 - 88.0 Schist with sediments.

88.0 - 90.0 Schist with minor sediments.

90.0 End of Hole
34.0 - Bedrock (dry to 47.0')
47.0 - Water - sediments and brown water to 56.0'

MICROSCOPIC

0.0 - 20.0 No sampling.
20.0 - 26.0 Gravel - variegated, weathered.
Concentrate - wet & rusted - no good.
26.0 - 32.0 Gravel - as before.
Concentrate - as before N.B. one flake gold.
32.0 - 38.0 Gravel - mixture gravel and rock chips.
Concentrate - wet & rusted as before sample.
- small sample (probably pyrite).
38.0 - 44.0 Quartz - sericite schist and quartz - light grey color
(started @ 38.0 - 40.0 for sure).
Concentrate - large pyrite sample - little magnetic material, trace magnetite.
44.0 - 50.0 44.0 - 46.0 Quartz sericite schist.
46.0 - 48.0 Quartz sericite schist (a few weathered particles).
48.0 - 50.0 Quartz sericite schist (minor weathered particles).
Concentrate - as before (heavy pyrite sample).
50.0 - 56.0 50.0 - 52.0 Quartz sericite schist - pale grey heavy on quartz (could be white channel).
52.0 - 54.0 As before (a few weathered chips).
54.0 - 56.0 Looks more gravelly - considerably more (50%) weathered chips.
Concentrate - very large pyrite sample - very little magnetic material.
56.0 - 62.0 56.0 - 58.0 20-30% weathered material.
58.0 - 60.0 10% weathered material
60.0 - 62.0 10% weathered (still whitish grey)
Concentrate - large pyrite sample as before.
62.0 - 68.0 Concentrate large pyrite sample as before weathered material still 10-20%, still whitish grey.
Concentrate - large pyrite sample.
68.0 - 74.0 68.0 - 70.0 10% weathered chips, rest is schist and quartz (whitish grey sample - high quartz).
70.0 - 72.0 40% weathered and look like gravel.

72.0 - 74.0 Quartz sericite schist - very high in quartz - whitish grey color.
 Concentrate - high pyrite as before.

74.0 - 80.0 Quartz - sericite schist - grey (normal).
 Concentrate - high pyrite as before.

80.0 - 86.0 As before.
 Concentrate - as before.

86.0 - 90.0 As before.
 Concentrate - as before.
Rotary Drill 11-80
Drilling Notes

34.0' - Bedrock.
 Samples dry to 42.0'

42.0 - Water (light flow).

46.0 - 54.0 Brown water.

59.0 - 60.0 Grey water.

60.0 - 64.0 Brown water.

66.0 - 68.0 Rock fragments.

68.0 - 70.0 Water gray.

82.0 - Hole depth.
 N.B. Gold flake found during sampling @ 26.0' - 32.0'.

0.0 - 20.0 No sampling.

20.0 - 24.0 Gravel.

24.0 - 26.0 Same.
 Concentrate - loaded with pyrite.

26.0 - 28.0 Gravel.

28.0 - 30.0 Gravel.

30.0 - 32.0 Rounded to semi-rounded to angular variegated, diverse
 limonite stain common.
 Concentrate - much pyrite, one gold flake, some
 magnetite, some iron balls.

32.0 - 34.0 As before.

34.0 - 36.0 Principally quartz sericite schist, some quartz.

36.0 - 38.0 As before - grey, little weathering.

32.0 - 38.0 Concentrate - pyrite high, trace magnetite one or two
 balls found.

38.0 - 40.0 As before, (N.B. some rounding - drilling abrasion).

40.0 - 42.0 Quartz sericite schist and quartz, grey uniform.

42.0 - 44.0 Quartz sericite schist and quartz, grey uniform.
38.0 - 44.0 Concentrate - big sample, mostly pyrite, fresh and glistening.

44.0 - 46.0 Mainly quartz sericite schist, some quartz, no weathering.

46.0 - 48.0

48.0 - 50.0 Quartz sericite schist - grey, angular gritty (harsh), no weathering.
 44.0 - 50.0 Concentrate - large, amount of pyrite trace of magnetite.

50.0 - 52.0 As before.

52.0 - 54.0 As before.

54.0 - 56.0 Quartz sericite schist grey, angular. N.B. Many samples have semi-rounded particles which could be the result of the drilling process.

50.0 - 56.0 Concentrate - large amount of pyrite trace of magnetite.

56.0 - 58.0 As before.

58.0 - 60.0 Quartz sericite schist as before.

60.0 - 62.0 Quartz sericite schist particles the particles are frequently rounded or semi-rounded. Is it possible that this is white channel? Minor weathered particles.
 56.0 - 62.0 Cone - straight glittering pyrite.

62.0 - 64.0 Quartz - sericite - schist - little rounding.

64.0 - 66.0 As before.

66.0 - 68.0 As before, very angular particles.
 62.0 - 68.0 Concentrate - glittering pyrite - large sample.

68.0 - 70.0 Quartz - sericite - schist.

70.0 - 72.0 Quartz - sericite - schist.

72.0 - 74.0 Quartz - sericite - schist (angular).
 68.0 - 74.0 Large pyrite sample.

74.0 - 82.0 Quartz - sericite schist.
 74.0 - 82.0 Large pyrite sample.

82.0 - End of Hole
Rotary Hole 12-80
Drilled on Hydraulic Outwash

38.0 - Wood chips and some little water (damp sample).
Probably old surface.

42.0 - 48.0 Black mud - organic.

52.0 - 54.0 Casing dried hole - driller says 51.0' to bedrock.

60.0 - 62.0 Wet slurry sample.

62.0 - 66.0 Small sample.

70.0 - 76.0 Large proportion quartz.

79.0 - Wet sample, fair flow.

78.0 - 80.0 Very large sample - hole cleaning out.

80.0 - 82.0 Flow increasing - brown water.

78.0 - 82.0 Looks and feels like sediments.

84.0 - 86.0 Still looks like sediments, water clearing.

90.0 - 92.0 Brown water - sample seems gritty.

100.0 - 102.0 Water dark reddish brown - sample contains limonite and
has some rounded grains and pebbles.

MICROSCOPIC

0.0 - 20.0 No sample.

20.0 - 22.0 Variegated, diverse but mostly angular many weathered
pebbles (iron stained).

22.0 - 24.0 As before.

24.0 - 26.0 As before.
20.0 - 26.0 Concentrate - glittering pyrite (small sample).

26.0 - 28.0 Variegated, diverse, frequently weathered mostly angular
- definitely loose material.

28.0 - 30.0 As before, variegated, angular.

30.0 - 32.0 Variegated, weathered little rounding still sediments.
26.0 - 32.0 Concentrate.

32.0 - 34.0 Variegated, diverse, some weathered, some modest
rounding.
34.0 - 36.0 As before.

36.0 - 38.0 Variegated, diverse mostly weathered, some modest rounding.
 32.0 - 38.0 Concentrate - glittering pyrite, some magnetite.

38.0 - 40.0 Diverse, variegated, frequent iron staining, some rounding.

40.0 - 42.0 As before.

42.0 - 44.0 As before.
 38.0 - 44.0 Concentrate - glittering pyrite, some magnetite. Some limonite pseudomorphs after pyrite. Several flakes gold.

44.0 - 46.0 Variegated, diverse, weathered, some rounding.

46.0 - 48.0 As before, slightly more rounded particles.

48.0 - 50.0 As before.

50.0 - 52.0 As before.
 44.0 - 50.0 Concentrate - glittering pyrite, magnetite some pseudomorphs, several flakes gold.

52.0 - 54.0 Quartz - sericite schist, grey, sharp fragments, no weathering, no diversity.

54.0 - 56.0 As before.
 50.0 - 56.0 Concentrate - gold flake noted, glittering pyrite, trace magnetite, several flakes gold.

56.0 - 58.0 As before.

58.0 - 60.0 Quartz - sericite - schist - some faint iron staining on many particles (could be sediments).

60.0 - 62.0 Diversity increasing (more weathered particles) probably still schist.
 56.0 - 62.0 Larger sample - glittering pyrite several flakes gold.

62.0 - 64.0 Quartz - sericite - schist - fragments, minor weathered fragments.

64.0 - 66.0 As before.

66.0 - 68.0 As before, minor stained fragments.
62.0 - 68.0 Glittering pyrite, one gold flake.

68.0 - 70.0 Quartz sericite schist - fresh rock chips.

70.0 - 72.0 Quartz sericite schist and quartz (50%).

72.0 - 74.0 Quartz sericite schist and quartz (50%).

74.0 - 76.0 Quartz sericite schist and quartz (50%).

68.0 - 74.0 Concentrate - glittering pyrite.

76.0 - 78.0 Quartz - sericite - schist and 50% quartz.

78.0 - 80.0 Quartz - sericite - schist and 50% quartz.

74.0 - 80.0 Concentrate - large pyrite sample.

80.0 - 82.0 Quartz - sericite schist minor stained particles.

82.0 - 84.0 Quartz - sericite schist minor stained particles.

84.0 - 86.0 Quartz - sericite schist 10% stained particles - particles all jagged.

80.0 - 86.0 Glittering pyrite, several gold flakes.

86.0 - 88.0 Quartz - sericite schist, minor stained particles.

88.0 - 90.0 Quartz - sericite schist, minor stained particles.

90.0 - 92.0 As before.

86.0 - 92.0 Concentrate - glittering pyrite.

92.0 - 94.0 Quartz - sericite - schist - fresh particles, minor stained particles.

94.0 - 96.0 As before.

96.0 - 98.0 As before, (minor stained particles).

92.0 - 98.0 Glittering pyrite.

98.0 - 100.0 Quartz - sericite - schist 20% stained particles minor limonite - sample looks like sediments (mainly color particle size).

100.0 - 102.0 Mainly quartz - sericite schist - 20% stained particles - could be sediments.

102.0 - 104.0 As above - little except fragments some stained.

104.0 - 106.0 As above - decrease in stained particles.

106.0 - 108.0 As above - decrease in stained particles.
108.0 - 110.0 As above, decrease in stained particles.
98.0 - 110.0 Concentrate - glittering pyrite.
24.0 - Driller says bedrock @ 24.0'.

34.0 - 36.0 Material looks like sediments - possibly mixed with boulders - dry.

75.0 - Hit water (brown).

80.0 - 82.0 Gravel - large pebbles, rounded, up to 2". Appears to be from this horizon. N.B. Fast drilling 75'-86'.

82.0 - 86.0 Feels soft - high mica content - appears to be rounded - water grey.

96.0 - 98.0 Appears to be in sediments (soft feel, rounded quartz grains, fast drilling).

98.0 - 100.0 Sample gritty.

100.0 - 102.0 Less mica, fairly gritty, some rounded grains.

106.0 - 108.0 Gritty with lots of mica - rounded fragments - decreasing - probably rock.

112.0 - Water increased (brown) sample small.

114.0 - 116.0 Sample soft (very heavy mica content N.B. No pyrite seen).

122.0 - 126.0 Semi-gritty - some rounded particles no pyrite.

126.0 - 128.0 Gritty.

MICROSCOPIC

0.0 - 20.0 No sampling.

20.0 - 26.0 Gravel.
Concentrate Magnetite - mainly magnetite tarnish pyrhotite, black balls.
Non-Magnetite - mainly pyrite.

26.0 - 32.0 Gravel - variegated weathered.
Concentrate Magnetite Portion - mainly magnetite.
Non-Magnetite - gold flakes (good size) pyrite.

32.0 - 38.0 Gravelly - variegated - mainly whitish grey with many iron stained (weathered particles).
Concentrate Magnetite - magnetite brown flakes.
Non-Magnetite - pyrite and 14 gold flakes (sample good size).
<table>
<thead>
<tr>
<th>Interval</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.0 - 44.0</td>
<td>Gravelly - mainly whitish grey - sub-angular particles, some weathered pebbles. Concentrate Magnetite - magnetite, brown flakes, iron balls. Non-Magnetite - 25 gold flakes, pyrite.</td>
</tr>
<tr>
<td>44.0 - 55.0</td>
<td>Some gravelly material mostly schist and quartz - whitish grey. Concentrate Magnetite - brown and black flakes (unusual). Non-Magnetite - one flake, pyrite - large.</td>
</tr>
<tr>
<td>50.0 - 56.0</td>
<td>Schist fragments and quartz - whitish grey minor weathered fragments. Concentrate Magnetite - mainly black flakes (unusual). Non-Magnetite - pyrite, 3 gold flakes (large sample).</td>
</tr>
<tr>
<td>62.0 - 68.0</td>
<td>Schist and quartz - whitish grey. Concentrate Magnetite - brown and black flakes. Non-Magnetite - 2 or 3 gold flakes, pyrite.</td>
</tr>
<tr>
<td>68.0 - 74.0</td>
<td>Schist and quartz - whitish grey as before. Concentrate Magnetite - brown and black flakes. Non-Magnetite - pyrite.</td>
</tr>
<tr>
<td>74.0 - 80.0</td>
<td>Gravel - variegated, weathered (mainly flurial pebbles, sand mixed with schist chips). Concentrate Magnetite - black balls, black and brown flakes, magnetite. Non-Magnetite - 19 gold flakes, pyrite.</td>
</tr>
<tr>
<td>80.0 - 86.0</td>
<td>Gravel and schist chips - much mica, definite rounded pebbles etc. Concentrate Magnetite - minor iron balls. Non-Magnetite - many (30) gold flakes.</td>
</tr>
<tr>
<td>86.0 - 92.0</td>
<td>Schist and gravel - whitish grey micaceous - schist with sluff.</td>
</tr>
<tr>
<td>92.0 - 98.0</td>
<td>Gravelly with schist chips - variegated weathered particles common, looks and feels like gravel. Concentrate Magnetite - mainly magnetite. Non-Magnetite - pyrite and 5 gold flakes.</td>
</tr>
<tr>
<td>98.0 - 104.0</td>
<td>Gravelly - looks like gravel - some definite pebbles - variegated - sluff or deep channel. Concentrate Magnetite - magnetite. Non-Magnetite - 7 gold flakes - mainly pyrite.</td>
</tr>
</tbody>
</table>
104.0 - 110.0 Gravelly - gravel, schist and mica looks and feels like gravel.
Concentrate Magnetite - magnetite and brown flakes.
Non-Magnetite - 4 gold flakes, pyrite.

110.0 - 116.0 Gravelly - gravel and schist mixed.
Concentrate Magnetite - magnetite.
Non-Magnetite - 4 gold flakes, pyrite.

116.0 - 122.0 Gravelly - looks like gravel - some white schist pebbles -
well rounded pebbles bear no resemblance to those seen in upper gravels.
Concentrate Magnetite - magnetite.
Non-Magnetite - 3 gold flakes, pyrite.

122.0 - 130.0 Gravelly - gravel mixed with chips - some well rounded white schist chips.
Concentrate Magnetite - magnetite.
Non-Magnetite - 5 gold flakes, pyrite.
Rotary Hole 14-80
Drilling Notes

48.0 - Probable bedrock (dry).
50.0 - 52.0 Looks like gravel.
52.0 - 54.0 Dry powder - probably bedrock.
56.0 - 58.0 Boulders and gravel.
58.0 - 61.0 Gravel (slightly damp).
62.0 - Still gravel (damp).
63.0 - Water - brown and muddy.
60.0 - 66.0 Damp sample - drilling fast - looks like gravel.
66.0 - 68.0 Rock - dry powder.
68.0 - 70.0 Dry rock.
70.0 - 72.0 Dry rock.
72.0 - 74.0 Possibly gravel.
74.0 - 76.0 Rock dust with pebbles - hole probably producing pebbles from uncased gravel.
78.0 - 80.0 Still pebbles and dust.
82.0 - 84.0 Water came in during drilling shut-down.
84.0 - 90.0 Water continuing - sample gritty.
 N.B. Pyrite evident in wet sample.

MICROSCOPIC

0.0 - 20.0 No sampling.
22.0 - 28.0 Gravel and quartz brown.
Concentrate Magnetite - magnetite and magnetic pebbles.
Remainder - one gold color (very small, trace pyrite).
28.0 - 34.0 Gravel - brown.
Concentrate Magnetite - portion magnetite, a few black balls.
Remainder - 3 flakes gold.
34.0 - 40.0 Gravel
Concentrate Magnetite - magnetite and black balls.
Remainder - pyrite and other heavies.
40.0 - 46.0 Schist fragments' predominant, minor (20%) variegated and/or weathered particles.
Concentrate - some magnetite, rest metal cuttings and magnetic pebbles.
Non-Magnetite - mainly pyrite (larger sample).

46.0 - 52.0 Variegated, about 50% fresh schist particles.
Magnetite Portion - mainly black balls, minor magnetite.
Remainder - chiefly pyrite - smallish sample.

52.0 - 58.0 Variegated - estimate 50% schist chips.
Concentrate Magnetite - black balls - very small sample.
Remainder - mainly pyrite - small sample.

58.0 - 64.0 Quartz sericite schist, 10-20% weathered chips.
Concentrate Magnetite - black balls and magnetite.
Remainder - mainly pyrite.

64.0 - 70.0 Mainly schist - 10-20% weathered chips.
Concentrate Magnetite Portion - decrease in proportion size - iron balls of iron sulphide.
Remainder - mainly pyrite - largish sample.

70.0 - 76.0 Schist - 5-10% weathered particles.
Concentrate Magnetite - very tiny proportion of concentrate, mainly FeS with trace iron balls and magnetite.
Remainder - large sample pyrite.

76.0 - 82.0 Schist - whitish grey - a few weathered particles.
Concentrate - large pyrite as before.

82.0 - 88.0 Schist.
Concentrate - large pyrite sample - one gold flake.

88.0 - 94.0 Schist - grey - still some weathered particles.
Concentrate - pyrite.

94.0 - 102.0 Schist - as before.
Concentrate - pyrite, one gold flake.
Rotary Drill Hole 15-80

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 40.0</td>
<td>Gravel.</td>
</tr>
<tr>
<td>40.0 -</td>
<td>Heavy water flow continuing (brown).</td>
</tr>
<tr>
<td>40.0 - 42.0</td>
<td>Sandy and micaceous.</td>
</tr>
<tr>
<td>42.0 - 44.0</td>
<td>Large gravel sample - driving casing.</td>
</tr>
<tr>
<td>44.0 - 46.0</td>
<td>Casing to bottom - heavy water flow sample variegated and large feels jagged - drilling very fast.</td>
</tr>
<tr>
<td>46.0 - 48.0</td>
<td>Casing on bottom but produced full tub (overbreak).</td>
</tr>
<tr>
<td>48.0 - 50.0</td>
<td>Full tub.</td>
</tr>
<tr>
<td>50.0 - 52.0</td>
<td>Casing ahead at bit. Stopped notes to help sampler.</td>
</tr>
<tr>
<td>60.0 - 62.0</td>
<td>Casing below bottom.</td>
</tr>
<tr>
<td>62.0 - 64.0</td>
<td>Tub overflowing (overbreak).</td>
</tr>
<tr>
<td>63.0 -</td>
<td>Driller reports casing solid.</td>
</tr>
<tr>
<td>68.0 -</td>
<td>Casing freed and driven water stopped.</td>
</tr>
<tr>
<td>68.0 - 70.0</td>
<td>Gritty but variegated.</td>
</tr>
<tr>
<td>96.0 -</td>
<td>Heavy water flow and more gravel.</td>
</tr>
<tr>
<td>108.0 - 110.0</td>
<td>Slowed up.</td>
</tr>
<tr>
<td>115.0 -</td>
<td>Rapid advance. N.B. Samples below casing are suspect from 95.0 to bottom. Slow progress from 108.0 with brief exceptions.</td>
</tr>
<tr>
<td>118.0 - 120.0</td>
<td>Rapid drilling - pebbles and fines - might still be gravel.</td>
</tr>
<tr>
<td>120.0 -</td>
<td>Hole finished.</td>
</tr>
</tbody>
</table>

15-80 MICROSCOPIC

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 20.0</td>
<td>No sampling.</td>
</tr>
<tr>
<td>20.0 - 26.0</td>
<td>Gravel - variegated, weathered, gravelly. Concentrate Magnetite - magnetite, a few iron balls. Non-Magnetite - brown sand, trace pyrite some goethite and limonite.</td>
</tr>
<tr>
<td>26.0 - 32.0</td>
<td>Gravel - as before. Concentrate - iron cuttings, magnetite, iron balls. Non-Magnetite - brown sand, pyrite small sample.</td>
</tr>
</tbody>
</table>
Gravel - variegated, diverse - as before.
Concentrate Magnetite - iron cuttings, balls and trace magnetite.
Non-Magnetite - brown sand, trace pyrite.

38.0 - 44.0 Gravel - coarse, variegated as before.
Concentrate Magnetite - iron cuttings and balls minor magnetite.
Non-Magnetite - brown sand, minor pyrite.

44.0 - 50.0 Gravel - as before.
Concentrate Magnetite - iron cuttings, brown flakes.
Non-Magnetite - brown sand, trace pyrite.

50.0 - 56.0 Gravel - as before.
Concentrate Magnetite - iron cuttings trace magnetite.
Non-Magnetite - brown sand trace pyrite.

56.0 - 62.0 Gravel as before.
Concentrate Magnetite - iron cuttings, brown flakes, trace magnetite.
Non-Magnetite - brown sand, trace pyrite.

62.0 - 68.0 Gravel - variegated, weathered - gravelly, looks and feels like gravel.
Concentrate Magnetite - brown flakes and cuttings.
Non-Magnetite - brown sand and pyrite.

68.0 - 74.0 Gravelly - still looks and feels like gravel but perhaps less so than earlier material.
Concentrate Magnetite - brown flakes (probably cuttings)
Non-Magnetite - brown sand and pyrite.

74.0 - 80.0 Gravelly - somewhat greyer than before.
Concentrate Magnetite - drill cuttings.
Non-Magnetite - brown sand and pyrite.

80.0 - 86.0 Gravelly - still looks and feels like gravel but diversity and oxidation decreased sample is greater.
Concentrate Magnetite - brown flakes, iron balls, possible gold on limonite.
Non-Magnetite - pyrite.

86.0 - 92.0 Schist - whitish grey - variegation decreased - mainly white grey schist and quartz chips.
Concentrate Magnetite - iron balls, brown flakes.
Non-Magnetite - pyrite (sample size increase).

92.0 - 98.0 Gravelly - seems to be rock chips and gravel - whitish grey, some variegation.
Concentrate Magnetite - black balls and cuttings.
Non-Magnetite - pyrite (small sample).
98.0 - 104.0 Gravelly - schist chips and gravel mixed.
Concentrate Magnetite - iron cuttings and balls.
Non-Magnetite - pyrite.

104.0 - 110.0 Schist and gravel mixed.
Concentrate Magnetite - iron cuttings.
Non-Magnetite - mainly pyrite (small sample).

110.0 - 116.0 Gravelly - mostly schist - very micaceous.
Concentrate Magnetite - iron cuttings.
Non-Magnetite - pyrite (small sample).

116.0 - 120.0 As before.
Concentrate Magnetite - as before.
Rotary Hole 16-80

20.0 - 26.0 Gravel and boulders.

26.0 - 28.0 Black slime and gravel (probably organic).

28.0 - 30.0 More water, ooze clearing.

30.0 - 32.0 Drilling fast in gravel - ooze cleared - driving casing stuck casing @ 31'.

36.0 - 38.0 Fast drilling.

38.0 - 40.0 Brown water - heavy flow - large sample.

40.0 - 42.0 Fast drilling.

40.0 - 58.0 Very rapid - very heavy water flow hole sluffing - large sample.

58.0 - 62.0 Heavy sluffing - very poor sampling.

64.0 - 66.0 Hole clogging due to sluffing.

66.0 - 68.0 Very slow.

68.0 - Cased to 70.0' water sealed off - semi-dry sample (perma frost).

90.0 - 94.0 Fast drilling variegated sample.

108.0 - Drill slowed.

90.0 - 108.0 Variegated fragments - some definite pebbles - mostly jagged - no pyrite.

108.0 - 120.0 Slow drilling - probably rock.

MICROSCOPIC

20.0 - 26.0 Gravel concentrate one flake - magnetite and iron balls.

26.0 - 32.0 Gravel and schist - mixed
Concentrate Magnetite - portion magnetite and iron balls.
Remainder - pyrite and 3 flakes gold.

32.0 - 38.0 Gravelly - 50% schist chips.
Concentrate Magnetite - portion chiefly brown flakes of rock, some iron balls, minor magnetite.
Remainder - mainly magnetite (small sample).
38.0 - 44.0 Gravel and schist mixed - probably gravel with boulders.
Concentrate Magnetic - magnetite and brown rock flakes.
Non-Magnetite - one gold flake, pyrite (small sample).

44.0 - 50.0 Gravelly - variegated - somewhat greyer than before.
Concentrate Magnetic - magnetite and brown rock flakes.
Non-Magnetite - mainly pyrite (small sample).

50.0 - 56.0 Gravelly - variegated - consists of quartz, schist fragments and weathered particles.
Concentrate Magnetic - magnetite and brown flakes.
Non-Magnetite - mainly pyrite (very small sample).

56.0 - 62.0 Gravelly - variegated - greyish, many iron stained fragments.
Concentrate Magnetic - magnetite and brown flakes (very small sample).
Non-Magnetite - mostly clean sand, minor pyrite (very small sample).

62.0 - 68.0 Gravelly - as before.
Concentrate Magnetic - magnetite and brown flakes.
Non-Magnetite - sand trace pyrite (very small sample).

68.0 - 74.0 Gravelly - as before.
Concentrate - as before.

74.0 - 80.0 Gravelly - coarser, more quartz than before, variegated, frequent iron staining.
Concentrate Magnetic - iron balls and magnetite.
Non-Magnetite - quartz sand, minor pyrite one gold flake.

80.0 - 86.0 Gravelly - as before.
Concentrate - as before.

86.0 - 92.0 Gravelly as before.
Concentrate Magnetic - black balls and magnetite brown flakes.
Non-Magnetite - oxidized pyrite, one gold flake.

92.0 - 98.0 Gravelly as before.
Concentrate Magnetic - black balls, magnetite, brown flakes and iron cuttings.
Non-Magnetite - 3 gold flakes (good size) some goethite pseudomorphs, oxidized pyrite.

98.0 - 104.0 Gravelly - as before - variegated weathered, etc.
Concentrate Magnetic - iron balls, magnetite, pyrohite
Non-Magnetite - very large increase in fresh glittering pyrite (change from rest of hole).
104.0 - 110.0 Still gravelly.
Concentrate - black balls, magnetite and brown flakes.
Non-Magnetite - pyrite.

110.0 - 116.0 Sample changed to whitish grey - mainly schist and quartz.
Concentrate Magnetite - brown flakes and black balls.
Non-Magnetite - pyrite - much larger sample.

116.0 - 120.0 Gravelly.
Concentrate - as before.
Rotary Hole 17-80
Drilling Notes

22.0 - Casing.

30.0 - 34.0 All fragments angular, ice xtals (permit frost), fragments - gritty - similar to last note in lower part - drilling fairly fast.

56.0 - 58.0 Still drilling fast.

MICROSCOPIC

20.0 - 26.0 Gravel.
Concentrate - iron cuttings and balls.
Non-Magnetite - pale sand, pyrite and oxidized pyrite.

26.0 - 32.0 Gravel and schist mixed.
Concentrate Magnetite - cuttings and balls trace magnetite.
Non-Magnetite - 26.0-32.0 3 flakes (saw two coarse flakes).

32.0 - 38.0 Schist and quartz - very micaceous whitish grey.
Concentrate Magnetite - cuttings, brown chips, black balls.
Non-Magnetite - pyrite, black pyrite, black heavies.

380 - 44.0 As before.

44.0 - 50.0 Schist - greenish grey.
Concentrate Magnetite - brown chips, black balls, magnetite.

50.0 - 56.0 Schist - gravelly sample many rounded grains, most iron stained.
Concentrate - iron cuttings and balls trace magnetite.
Non-Magnetite - pyrite of oxidized pyrite - one gold flake brown sand.

56.0 - 62.0 Schist and quartz chips - angular gritty.
Concentrate Magnetite - brown chips, cuttings, iron balls, magnetite.
Non-Magnetite - pyrite, oxidized pyrite and brown sand.

62.0 - 68.0 As before.
Concentrate Magnetite - cuttings and balls.
Non-Magnetite - pyrite and oxidized pyrite.
68.0 - 74.0 As before.
Concentrate - as before.

74.0 - 80.0 As before.
Concentrate - cuttings and brown chips.
Non-Magnetite - pyrite and oxidized pyrite.

80.0 - 86.0 As before.
Concentrate - as before.

86.0 - 92.0 Schist and quartz - fragments sharp and angular, minor Fe staining.
Concentrate Magnetite - brown chips and iron cuttings.
Non-Magnetite - pyrite.

92.0 - 100.0 As before.
Rotary Hole 18-80

21.0 - Casing.

26.0 - 28.0 Sample semi-dry - probably frozen schist 80.0' deep.

MICROSCOPIC

0.0 - 20.0 No sampling.

26.0 - 32.0 Gravel - brown variegated, gravelly. Concentrate Magnetite - iron cuttings, magnetite. Non-Magnetite - minor pyrite, many black grains two gold flakes. Gravel - 60-70% quartz fragments (jagged) looks more like bedrock.

32.0 - 38.0 Schist - high schist and quartz content - still some aspects of gravel. Concentrate Magnetite - brown magnetic chips (possibly formed from molten welding material). (Hard grey metal inside).

38.0 - 44.0 As before, pale grey - micaceous. Concentrate Magnetite - iron cuttings and brown chips. Non-Magnetite - pyrite - many dark heavies (oxidized pyrite).

44.0 - 50.0 Schist and quartz chips. Concentrate - iron cuttings and brown chips. Non-Magnetite - pyrite - many dark heavies - some are oxidized pyrite.

50.0 - 56.0 Schist and quartz chips. Concentrate Magnetite - iron cuttings. Non-Magnetite - mostly pyrite, some oxidized.

56.0 - 62.0 As before. Concentrate - as before.

62.0 - 68.0 Schist and quartz - color darkened. Concentrate Magnetite - iron cuttings. Non-Magnetite - trace pyrite, pale sand.

74.0 - 80.0 Schist and quartz. Concentrate Magnetite - brown chips and iron cuttings. Non-Magnetite - pyrite and oxidized pyrite.
Rotary Drill Hole 19-80
Drilling Notes

N.B. Ordered tight casing.

20.0 - Wet sample - dark brown - some water - very fast drilling - casing sinking by itself.

24.0 - Stopped and drove casing.

24.0 - 26.0 Dry sample.

26.0 - 28.0 Probably gravel.

28.0 - 30.0 Sample looks like ones on east side of creek.

36.0 - 38.0 Dry - fairly fast.

38.0 - 40.0 Sub-angular particles.

40.0 - Drilling steady.

42.0 - Casing ended.

44.0 - 50.0 Steady drilling.

52.0 - Slight increase in drilling speed.

60.0 - Sample damp and muddy.

62.0 - 64.0 Water flow.

64.0 - 66.0 Water continuing - excess sample being thrown out.

70.0 - Rock chips look graphitic.

72.0 - 74.0 Sample feels sandy, sample seems to be changing with every test.

76.0 - 78.0 Mainly chlorite schist.

79.0 - Driller says he's going through boulders.

78.0 - 80.0 Excess sample water brownish and increasing.

MICROSCOPIC

0.0 - 20.0 No sample.

<table>
<thead>
<tr>
<th>Depth Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.0 - 38.0</td>
<td>Mainly schist and quartz - 10-20% weathered particles. Concentrate Magnetite Portion - mainly magnetite - very small sample. Non-Magnetite - pyrite and minor goethite - small sample.</td>
</tr>
<tr>
<td>38.0 - 44.0</td>
<td>Sample rather sandy - brownish, many particles slightly stained. Concentrate - mainly pyrite - smallish sample.</td>
</tr>
<tr>
<td>44.0 - 50.0</td>
<td>Mainly quartz sericite schist, minor stained particles - feels sandy and looks gravelly. Concentrate - pyrite, small sample.</td>
</tr>
<tr>
<td>50.0 - 56.0</td>
<td>Mainly quartz sericite schist feels sandy. N.B. Sandy feel probably due to finer fraction collected due to dry drilling. Concentrate - small magnetite portion - mostly magnetite and iron cuttings. Non-Magnetite - pyrite - sample size increased.</td>
</tr>
<tr>
<td>56.0 - 62.0</td>
<td>Mainly schist and quartz - looks gravelly - 10-30% stained fragments. Concentrate - increase in magnetite part - mainly iron cuttings, some magnetite. Non-Magnetite - larger sample - all pyrite - one gold flake.</td>
</tr>
<tr>
<td>62.0 - 68.0</td>
<td>Feels and looks sandy - seems to be mainly angular particles of schist and quartz, many stained. Concentrate Magnetite - small mainly black balls and magnetite. Non-Magnetite - largish pyrite sample, two gold flakes.</td>
</tr>
<tr>
<td>68.0 - 74.0</td>
<td>Feels and looks sandy - slightly brownish grey - particles mainly angular - possibly hole cleaning out (see drilling notes). Concentrate Magnetite Portion - mainly black balls and iron fittings, minor magnetite. Non-Magnetite - large sample pyrite, one gold flake.</td>
</tr>
<tr>
<td>74.0 - 80.0</td>
<td>Looks and feels sandy - slightly brownish grey - particles mostly angular some staining. Concentrate Magnetite Portion - small iron balls, magnetite and mainly iron chips. Non-Magnetite Portion - very large, all pyrite.</td>
</tr>
<tr>
<td>80.0 - 86.0</td>
<td>Mainly schist and quartz - sample coarser and more gritty.</td>
</tr>
</tbody>
</table>
Concentrate - mainly pyrite, 2 gold flakes.

86.0 - 92.0 Sample looks and feels like sandy gravel - color brownish grey, particles mainly angular some Fe staining. (20-30% of particles)
Concentrate - one gold flake, magnetite portion, mainly iron cuttings.
Non-Magnetite Portion - mainly pyrite.

92.0 - 100.0 Looks gravelly - contains some sub-angular particles - 20-30% Fe - stained magnetite portion - mainly iron cuttings.
Non-Magnetite - part pyrite (small sample).
Rotary Hole 20-80
Drilling Notes

22.0 - 24.0 Graphitic fragments as in fault in 19-80 drilling speed modest casing tight samples dry.
26.0 - 28.0 Sample brown, probably gravel.
28.0 - 30.0 Similar, some pebbles, casing tight.
34.0 - 36.0 Drill speeded up - sample contains sub-angular pebbles.
38.0 - 40.0 Sample appears to be sandy stopped to add casing.
40.0 - 42.0 Wet sample, some water still coming.
42.0 - 44.0 Variegated, limonite pebbles, water brownish.
40.0 - 46.0 Sample still wet (slurry).
46.0 - 48.0 Sample still sloppy - small water flow increasing.
48.0 - 50.0 Water slowed but still fair flow with casing 2' off bottom.
50.0 - 52.0 Water brownish and increasing, driving casing. N.B. Large sample.
51.0 - 54.0 Drill slowed down, water paled.
52.0 - 54.0 Brown water - looks like sediments casing being driven to bottom every 2' (drilling speed fairly fast).
52.0 - 54.0 Water reduced to small flow by casing but builds up quickly - sample feels sandy - water brownish.
54.0 - 56.0 Cased to bottom - water stopped.
58.0 - 60.0 Sample looks and feels like creek gravel (variegated).
60.0 - 62.0 Water slowed due to casing.
62.0 - 66.0 Fast drilling - water brown very heavy flow - half of sample shovelled off.
70.0 - 72.0 Stones raining out of sample - casing driven but water continued - driving casing again.
75.0 - 76.0 Stopped water but is started again immediately after drilling started - heavy flow, brownish.
76.0 - 78.0 Drilling speed variable - brown water went to grey.
Cased and substantially reduced flow.

Water flow heavy again.

Heavy water flow (grey) - drove casing hard but flow continued.

Water brownish - very small sample.

Casing stuck at 79.0' water continuing very heavy, casing started again.

Brown water - heavy flow.

Oversize sample.

Very heavy flow (brown).

Extremely heavy flow 2/3 tub of coarse fraction - continuous casing failed to stop flow.

Hole stopped - shovelled out half of sample - contains large chips of schist and quartz many iron stained.

20-80 MICROSCOPIC

0.0 - 22.0 No sampling.

22.0 - 28.0 Gravel - variegated, weathered, gravelly.
Concentrate Magnetite - magnetite and brown flakes.
Non-Magnetite - mainly pyrite - small sample - one gold flake.

28.0 - 34.0 Gravel as before.
Concentrate Magnetite - magnetite and brown flakes.
Non-Magnetite - mainly pyrite - small sample.

34.0 - 40.0 Gravelly, greyer than before (more quartz) less weathering.
Concentrate Magnetite - brown flakes, minor magnetite, a few black balls.
Non-Magnetite - pyrite and brown sand (mostly angular to sub-angular).

40.0 - 46.0 Gravelly - 50% stained less variegated 50% rock chips.
Concentrate Magnetite - brown and black flakes, a little iron balls trace magnetite.

46.0 - 52.0 Gravelly as before.
Concentrate Magnetite - iron cuttings and black balls.
Non-Magnetite - mainly pyrite.
52.0 - 58.0 Gravelly - variegated - 50-60% Fe stained angular to sub-angular looks and feels like gravel.
Concentrate Magnetite - iron cuttings minor magnetite.

58.0 - 64.0 Gravelly - less iron staining becoming whitish grey.
Concentrate - iron cuttings minor magnetite.
Non-Magnetite - mainly pyrite, brown sand.

64.0 - 70.0 Gravelly but less so than before - sample coarser to greyer (less Fe stained).
Concentrate Magnetite - brown flakes (bit cuttings) iron balls trace magnetite.
Non-Magnetite - mainly pyrite - larger sample than before.

70.0 - 76.0 Gravel - sandy, rounded pebbles, variegated and feels and looks like gravel.
Concentrate Magnetite - brown flakes, trace magnetite.
Non-Magnetite - pyrite increased sample size.

76.0 - 82.0 Gravelly - paler than last sample but otherwise similar.
Concentrate Magnetite - rich chips.

82.0 - 88.0 Gravelly - whitish grey - some variegation, sample more gritty 60-70% rock chips.
Concentrate Magnetite - some chips seen as rock or pebbles (Fe stained) composed mainly of magnetite, also some iron cuttings.

88.0 - 92.0 As before.
Concentrate - as before - one gold flake.

N.B. Hole was tightly cased as a trial - results were similar to less tightly cased holes in the writer's opinion, much of the hole was drilling in gravel.
Rotary Drill Hole 21-80
Drilling Notes

20.0 - Cased.
No sampling to 40.0' (est 20-25 above stream surface).
Drilling in overburden - cuttings changed from greenish
grey to brown.

40.0 - Rapid drilling in sediments.

42.0 - 56.0 Rapid drilling.

64.0 - 76.0 Steady drilling. Driller running tools up and down on
each sample to clear cuttings (damp).

MICROSCOPIC

0.0 - 40.0 No sampling.

40.0 - 46.0 Gravelly, variegated.
Concentrate Magnetite - magnetite of brown flakes.
Non-Magnetite - sandy - mostly iron stained.

46.0 - 52.0 Gravelly - variegated, frequent iron staining.
Concentrate - as before.

52.0 - 58.0 Gravelly - variegated, weathered.
Concentrate Magnetite - magnetite and brown chips.
Non-Magnetite - brownish, sand - no pyrite.

58.0 - 64.0 Gravelly as before.
Concentrate Magnetite - magnetite and brown chips.
Non-Magnetite - brown sand.

64.0 - 70.0 As before.
Concentrate Magnetite - magnetite and brown chips.
Non-Magnetite - brown sand.

70.0 - 76.0 As before, variegated, weathered, gravelly.
Concentrate Magnetite - magnetite and brown chips.
Non-Magnetite - brown sand.

76.0 - 80.0 Gravelly - somewhat greyer but still seemingly
sediments.
Concentrate Magnetite - magnetite and brown chips.
Non-Magnetite - greyer than before.
<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 20.0</td>
<td>Casing.</td>
</tr>
<tr>
<td>34.0 - 36.0</td>
<td>Rapid drilling - dry sample - over drilling (large sample).</td>
</tr>
<tr>
<td>40.0 - 42.0</td>
<td>Sample brown from 32.0' to 42.0'.</td>
</tr>
<tr>
<td>44.0 - 46.0</td>
<td>Looks like sediments, sand in dust and chips drill slow vibrating (boulders).</td>
</tr>
<tr>
<td>46.0 - 48.0</td>
<td>Sample grey - drilling noisy but fairly fast.</td>
</tr>
<tr>
<td>49.0</td>
<td>Changed to brown again - uneven and noisy (boulders).</td>
</tr>
<tr>
<td>52.0 - 54.0</td>
<td>Cuttings turned whitish color - dusty - slow noisy drilling.</td>
</tr>
<tr>
<td>56.0 - 58.0</td>
<td>Slow noisy.</td>
</tr>
<tr>
<td>58.0 - 60.0</td>
<td>Faster brown.</td>
</tr>
<tr>
<td>60.0 - 62.0</td>
<td>Slow, noisy, grey.</td>
</tr>
<tr>
<td>64.0 - 66.0</td>
<td>Slow, noisy, grey.</td>
</tr>
<tr>
<td>65.0</td>
<td>Water - slow and noisy, brown.</td>
</tr>
<tr>
<td>68.0 - 70.0</td>
<td>Sandy and wet - fast drilling - occasional limonite chips, very brown.</td>
</tr>
<tr>
<td>72.0 - 74.0</td>
<td>Speed variable and very heavy color in water (modest flow) - sample variegated, sandy.</td>
</tr>
<tr>
<td>74.0 - 76.0</td>
<td>Rig vibrating, noisy (as before).</td>
</tr>
<tr>
<td>76.0 - 78.0</td>
<td>Water increasing, sample variegated, brown.</td>
</tr>
<tr>
<td>79.0</td>
<td>Speed slowed - water greenish grey, lower half of sample brownish, sandy, upper half black rock chips.</td>
</tr>
<tr>
<td>80.0 - 82.0</td>
<td>Layered black and brown, sandy.</td>
</tr>
<tr>
<td>82.5</td>
<td>Water grey and fairly heavy flow - drilling slow.</td>
</tr>
<tr>
<td>84.0</td>
<td>Color and drilling variable.</td>
</tr>
<tr>
<td>86.0</td>
<td>Water white, drilling slow, vibrating water flow rate constant from 76.0 - 86.0.</td>
</tr>
</tbody>
</table>
87.0 - Drill speeded up, color returned to brown, flow increasing.

88.0 - Penetration slowed, water pale, penetration increased, color black.

88.0 - 90.0 Sample, variegated, less sandy, penetration and water color closely related and variable.

88.5 - Drill almost stationary - resumed after 20 minutes but very slow.

90.5 - Very slow penetration.

91.0 - Color returning - drilling slow.

92.0 - 94.0 Water grey.

94.0 - 96.0 Water grey.

96.0 - 98.0 Water grey to greenish.

MICROSCOPIC

0.0 - 20.0 No sample.

20.0 - 26.0 Gravel - variegated grey to brown.
Concentrate Magnetite - iron cuttings, trace iron balls.
Non-Magnetite - brownish variegated sand.

26.0 - 32.0 Quartz mica schist - minor weathered particles.
Concentrate Magnetite - iron cuttings.
Non-Magnetite - brown variegated sand.

32.0 - 38.0 Gravelly - brownish grey variegated, partly weathered.
Concentrate Magnetite - iron chips - trace magnetite, trace iron balls.
Non-Magnetite - brownish variegated sand.

38.0 - 44.0 Gravelly - brownish grey, variegated, partly weathered.
Concentrate Magnetite - iron cuttings.
Non-Magnetite - brown, sand variegated weathered.

44.0 - 50.0 Gravelly - less sand than previous samples - higher proportion of grey schist chips.
Concentrate Magnetite - iron cuttings.
Non-Magnetite - brown sand and partly oxidized sulphides.

50.0 - 56.0 Gravelly - variegated but contains high proportion of schist chips - nature uncertain.
Concentrate Magnetite - large sample of iron cuttings.
Non-Magnetite - brown sand and pyrite.
56.0 - 62.0 Gravelly - as before, origin uncertain.
Concentrate Magnetite - iron chips, trace pyrite, trace iron balls.
Non-Magnetite - brown sand and pyrite.

62.0 - 68.0 Gravelly - increase in variegation and weathering - looks and feels like sediments.
Concentrate Magnetite - iron balls and iron chips, minor sulphide.
Non-Magnetite - brown sand, limonite trace pyrite.

68.0 - 74.0 Gravelly - schist chip proportion higher than last sample - otherwise similar.
Concentrate Magnetite - black balls, iron chips, minor pyrite.
Non-Magnetite - brownish sand - moderate sulphide.

74.0 - 80.0 Gravelly - weathered, variegated material mixed with schist chips.
Concentrate Magnetite - black balls, iron chips, minor sulphide.
Non-Magnetite - pyrite - occasional crusting with orange-red mineral.

80.0 - 86.0 Schist grey - some variegated and or weathered material rest is greenish grey schist fragments.
Concentrate Magnetite - iron chips, balls, minor sulphides.
Non-Magnetite - sand and pyrite.

86.0 - 92.0 Quartz - sericite chlorite schist - 20% stained chips.
Concentrate Magnetite - iron chips, black balls, minor sulphide.
Non-Magnetite - pyrite, galena.

92.0 - 98.0 Schist - as before.
Concentrate Magnetite - iron chips, minor pyrite.
Non-Magnetite - pyrite and brown sand.
Rotary Hole 23-80
Drilling Notes

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0 - 22.0</td>
<td>Damp sample.</td>
</tr>
<tr>
<td>22.0 - 24.0</td>
<td>Brown mud and pebbles.</td>
</tr>
<tr>
<td>24.0 - 26.0</td>
<td>Brown mud and pebbles.</td>
</tr>
<tr>
<td>28.0 - 30.0</td>
<td>Hole not clearing because of sticky brown sediments.</td>
</tr>
<tr>
<td>30.0 - 32.0</td>
<td>As before.</td>
</tr>
<tr>
<td>34.0 - 36.0</td>
<td>As before - highly variegated - includes pieces of frozen mud.</td>
</tr>
<tr>
<td>36.0 - 38.0</td>
<td>Black mud - washed pebbles variegated, some wood chips.</td>
</tr>
<tr>
<td>39.0 -</td>
<td>Probably bedrock.</td>
</tr>
<tr>
<td>40.0 - 42.0</td>
<td>Bedrock - grey powder - somewhat talcose.</td>
</tr>
<tr>
<td>42.0 - 44.0</td>
<td>Still some wood chips.</td>
</tr>
<tr>
<td>44.0 - 46.0</td>
<td>Grey soft powder flecked with chips of white talc - still wood chips.</td>
</tr>
<tr>
<td>46.0 - 48.0</td>
<td>Grey to greenish grey, dry, some wood chips, chlorite schist.</td>
</tr>
<tr>
<td>48.0 - 50.0</td>
<td>Same - drilling steady.</td>
</tr>
<tr>
<td>50.0 - 52.0</td>
<td>Whitish grey powder.</td>
</tr>
<tr>
<td>52.0 - 54.0</td>
<td>Whitish grey powder.</td>
</tr>
<tr>
<td>54.0 - 56.0</td>
<td>Whitish grey powder.</td>
</tr>
<tr>
<td>56.0 - 58.0</td>
<td>Whitish grey powder.</td>
</tr>
<tr>
<td>58.0 -</td>
<td>Pyrite noted.</td>
</tr>
<tr>
<td>58.0 - 60.0</td>
<td>Dry as before.</td>
</tr>
<tr>
<td>60.0 - 62.0</td>
<td>As before.</td>
</tr>
<tr>
<td>64.0 -</td>
<td>Fresh unweathered pyritic chlorite schist.</td>
</tr>
<tr>
<td>67.0 -</td>
<td>Drilling speed increased and variable.</td>
</tr>
<tr>
<td>Depth</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>72.0 - 74.0</td>
<td>Grey, dry dust - (some fresh green chlorite particles when washed).</td>
</tr>
<tr>
<td>76.0 - 78.0</td>
<td>Same.</td>
</tr>
<tr>
<td>78.0 - 80.0</td>
<td>Same.</td>
</tr>
<tr>
<td>80.0 - 82.0</td>
<td>Drilling slowed, large sample - looks the same.</td>
</tr>
<tr>
<td>82.0 - 84.0</td>
<td>Same.</td>
</tr>
<tr>
<td>84.0 - 86.0</td>
<td>Same.</td>
</tr>
<tr>
<td>107.0</td>
<td>Water - brown - sudden heavy flow.</td>
</tr>
<tr>
<td>112.0</td>
<td>Water cleared and sample returned to schist after some variegation, probably due to washing at hole and hole of hung-up cuttings.</td>
</tr>
</tbody>
</table>

MICROSCOPIC

<table>
<thead>
<tr>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
</table>
| 20.0 - 26.0 | Gravel - brownish, variegated, angular.
Concentrate Magnetite - black balls and magnetite.
Non-Concentrate - pyrite and goethite. |
| 26.0 - 32.0 | Gravel - as before.
Concentrate Magnetite - black balls, iron cuttings and magnetite.
Non-Magnetite - pyrite, goethite and brown sand. |
| 32.0 - 38.0 | Gravel - as before.
Concentrate Magnetite - magnetite and iron cuttings.
Non-Magnetite - pyrite and goethite and brown sand. |
| 38.0 - 44.0 | Quartz sericite schist - some gravel includes - whitish grey.
Concentrate Magnetite - black balls, iron cuttings and magnetite.
Non-Magnetite - pyrite - minor iron oxides large sample. |
| 44.0 - 50.0 | Quartz sericite - chlorite schist - contains minor white talc.
Concentrate Magnetite - black balls and iron cuttings.
Non-Magnetite - pyrite (large sample). |
| 50.0 - 56.0 | Quartz sericite schist - as before.
Concentrate Magnetite - iron balls and iron chips.
Non-Magnetite - pyrite. |
| 56.0 - 62.0 | As before.
Concentrate magnetite - as before.
Non-Magnetite - as before. |
62.0 - 68.0 Quartz - sericite chlorite schist - 10% quartz. Concentrate Magnetite - iron balls and iron cuttings. Non-Magnetite - pyrite as before.

68.0 - 74.0 As before. Concentrate - as before.

74.0 - 80.0 As before. Concentrate Magnetite - iron balls and iron chips. Non-Magnetite - pyrite.

80.0 - 86.0 As before. Concentrate - as before.

86.0 - 92.0 As before. Concentrate Magnetite - iron balls and iron cuttings. Non-Magnetite - pyrite.

92.0 - 98.0 As before. Concentrate - as before.

98.0 - 104.0 As before. Concentrate Magnetite - iron chips - minor iron balls, trace magnetite and pyrhotite.

104.0 - 112.0 As before. Concentrate - as before.
Rotary Hole 24-80
Drilling Notes

20.0 - Casing not in bedrock.
20.0 - 22.0 Brown mud.
28.0 - 30.0 Brown mud.
32.0 - 34.0 Brown mud (very small sample).
34.0 - 36.0 Grey mud.
36.0 - 38.0 Grey and black mud (perma-frost).
38.0 - Bedrock - grey powder.
42.0 - 44.0 Over drilling grey powder.
44.0 - 46.0 Over drilling grey powder.
46.0 - 48.0 Over drilling grey powder.
48.0 - 50.0 Over drilling grey powder.
50.0 - 52.0 Chlorite schist, green, fresh pyrite.
52.0 - 54.0 Sample less dusty, slightly moist.
54.0 - 56.0 Sample less dusty, slightly moist, pyrite.
55.0 - Distorted (folded) chips - drilling steady and slow.
58.0 - 60.0 As before, distorted chips.
62.0 - 64.0 Sample very dusty.
67.0 - Penetration rate varying (noisy).
68.0 - 70.0 Penetration rate varying (noisy).
70.0 - 100.0 Dry samples to 100.0

MICROSCOPIC

20.0 - 26.0 Gravel - brown gravelly, variegated, angular to
sub-angular particles.
Concentrate Magnetite - magnetite, iron balls, drill
cuttings, brown chips.
Non-Magnetite - pyrite and sand and limonite.
26.0 - 32.0 As before.
Concentrate Magnetite - iron cuttings and balls, magnetite, brown chips.
Non-Magnetite - pyrite, goethite, brown sand.

32.0 - 38.0 Gravel - variegated, gravelly, paler (increased whitish grey some well travelled white schist pebbles).
Concentrate Magnetite - magnetite and iron cuttings.
Non-Magnetite - pyrite, goethite, brown sand.

38.0 - 44.0 Rock change - probably start of bedrock - whitish grey - semi-rounded particles common - possible due to drilling abrasion - could also be white channel material (even quartz chips rounded).
Concentrate Magnetite - brown chips, iron cuttings, minor magnetite.
Non-Magnetite - pyrite (large sample) - sharp increase with change from gravel to rock and with corresponding decrease in magnetite.

44.0 - 50.0 As before.
Concentrate Magnetite - rusty metal cuttings.
Non-Magnetite - pyrite - large sample.

50.0 - 56.0 As before - small amounts of gravel in sample - probably from uncased gravels.
Concentrate Magnetite - iron cuttings (rusty).
Non-Magnetite - pyrite.

56.0 - 62.0 As before (no gravel) - whitish grey.
Concentrate Magnetite - iron cuttings (rusty).
Non-Magnetite - pyrite.

62.0 - 68.0 As before.
Concentrate - as before.

68.0 - 74.0 As before (whitish grey quartz - sericite schist).
Concentrate Magnetite - iron cuttings (large sample).
Non-Magnetite - pyrite.

74.0 - 80.0 As before.
Concentrate - as before.

80.0 - 86.0 As before - sample somewhat finer and more sericitic.
Concentrate Magnetite - black balls and iron cuttings.
Non-Magnetite - pyrite.

86.0 - 92.0 Quartz - sericite schist as before (some folded fragments noted) no weathering.
Concentrate Magnetite - black balls and iron cuttings.
Non-Magnetite - pyrite.

72.0 - 100.0 As before.
N.B. No weathering below 38.0' - rounding of particles higher in rock sections than in gravel.
Rotary Drilling Results Using a Figure of $500.00 1 oz. for Unrefined Placer Gold.

<table>
<thead>
<tr>
<th>Hole Number</th>
<th>Depth Internal</th>
<th>Weight in Grams</th>
<th>Value/Cubic Yard</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-80</td>
<td>20'-26'</td>
<td>0.00046</td>
<td>$ 0.17</td>
</tr>
<tr>
<td>7-80</td>
<td>38'-44'</td>
<td>0.00052</td>
<td>$ 0.19</td>
</tr>
<tr>
<td>8-80</td>
<td>20'-26'</td>
<td>0.00407</td>
<td>$ 1.50</td>
</tr>
<tr>
<td>12-80</td>
<td>38'-44'</td>
<td>0.00011</td>
<td>$ 0.04</td>
</tr>
<tr>
<td></td>
<td>44'-50'</td>
<td>0.00738</td>
<td>$ 2.72</td>
</tr>
<tr>
<td></td>
<td>50'-56'</td>
<td>0.02200</td>
<td>$ 8.11</td>
</tr>
<tr>
<td></td>
<td>56'-62'</td>
<td>0.00711</td>
<td>$ 2.62</td>
</tr>
<tr>
<td></td>
<td>62'-68'</td>
<td>0.00142</td>
<td>$ 0.52</td>
</tr>
<tr>
<td></td>
<td>80'-86'</td>
<td>0.00300</td>
<td>$ 1.11</td>
</tr>
<tr>
<td>13-80</td>
<td>26'-32'</td>
<td>0.01904</td>
<td>$ 7.02</td>
</tr>
<tr>
<td></td>
<td>32'-38'</td>
<td>0.18441</td>
<td>$67.95</td>
</tr>
<tr>
<td></td>
<td>38'-44'</td>
<td>0.01010</td>
<td>$ 3.72</td>
</tr>
<tr>
<td></td>
<td>44'-50'</td>
<td>0.00415</td>
<td>$ 1.53</td>
</tr>
<tr>
<td></td>
<td>50'-66'</td>
<td>0.01129</td>
<td>$ 4.16</td>
</tr>
<tr>
<td></td>
<td>62'-68'</td>
<td>0.00543</td>
<td>$ 2.00</td>
</tr>
<tr>
<td></td>
<td>74'-80'</td>
<td>0.06945</td>
<td>$25.59</td>
</tr>
<tr>
<td></td>
<td>80'-86'</td>
<td>0.11615</td>
<td>$42.80</td>
</tr>
<tr>
<td></td>
<td>86'-92'</td>
<td>0.01332</td>
<td>$ 4.91</td>
</tr>
<tr>
<td></td>
<td>92'-98'</td>
<td>0.02582</td>
<td>$ 9.51</td>
</tr>
<tr>
<td></td>
<td>98'-104'</td>
<td>0.01716</td>
<td>$ 6.32</td>
</tr>
<tr>
<td></td>
<td>104'-110'</td>
<td>0.00362</td>
<td>$ 1.33</td>
</tr>
<tr>
<td></td>
<td>110'-116'</td>
<td>0.00350</td>
<td>$ 1.29</td>
</tr>
<tr>
<td></td>
<td>116'-122'</td>
<td>0.00725</td>
<td>$ 2.67</td>
</tr>
<tr>
<td></td>
<td>122'-130'</td>
<td>0.01582</td>
<td>$ 5.83</td>
</tr>
<tr>
<td>14-80</td>
<td>28'-34'</td>
<td>0.00417</td>
<td>$ 1.54</td>
</tr>
<tr>
<td></td>
<td>82'-88'</td>
<td>0.00045</td>
<td>$ 0.15</td>
</tr>
<tr>
<td></td>
<td>94'-102'</td>
<td>0.00104</td>
<td>$ 0.38</td>
</tr>
<tr>
<td>15-80</td>
<td>26'-32'</td>
<td>0.00094</td>
<td>$ 0.35</td>
</tr>
<tr>
<td>16-80</td>
<td>20'-26'</td>
<td>0.00093</td>
<td>$ 0.34</td>
</tr>
<tr>
<td></td>
<td>26'-32'</td>
<td>0.00472</td>
<td>$ 1.72</td>
</tr>
<tr>
<td></td>
<td>38'-44'</td>
<td>0.00111</td>
<td>$ 0.41</td>
</tr>
<tr>
<td></td>
<td>86'-92'</td>
<td>0.00335</td>
<td>$ 1.23</td>
</tr>
<tr>
<td></td>
<td>92'-98'</td>
<td>0.02876</td>
<td>$10.60</td>
</tr>
<tr>
<td>17-80</td>
<td>26'-32'</td>
<td>0.06270</td>
<td>$23.10</td>
</tr>
<tr>
<td>18-80</td>
<td>20'-26'</td>
<td>0.00200</td>
<td>$ 0.74</td>
</tr>
<tr>
<td></td>
<td>26'-32'</td>
<td>0.00143</td>
<td>$ 0.53</td>
</tr>
<tr>
<td>19-80</td>
<td>62'-92</td>
<td>0.00016</td>
<td>$ 0.06</td>
</tr>
<tr>
<td></td>
<td>86'-92'</td>
<td>0.01764</td>
<td>$ 6.50</td>
</tr>
<tr>
<td>20-80</td>
<td>Colors - too small to weigh.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Certificate of Analysis

TO: Klon Exploration Ltd.
General Delivery
Dawson City, Yukon

REPORT NO.: A - 40 - 16
DATE: June 26, 1980

I hereby certify that the following are the results of analyses made by us upon the herein described drill core samples:

<table>
<thead>
<tr>
<th>MARKED</th>
<th>oz/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5887</td>
<td>0.002</td>
</tr>
<tr>
<td>88</td>
<td>0.002</td>
</tr>
<tr>
<td>89</td>
<td>0.002</td>
</tr>
<tr>
<td>90</td>
<td>0.002</td>
</tr>
<tr>
<td>91</td>
<td>0.002</td>
</tr>
<tr>
<td>92</td>
<td>0.002</td>
</tr>
<tr>
<td>93</td>
<td>0.002</td>
</tr>
<tr>
<td>94</td>
<td>0.002</td>
</tr>
<tr>
<td>95</td>
<td>0.002</td>
</tr>
<tr>
<td>96</td>
<td>0.002</td>
</tr>
<tr>
<td>5876</td>
<td>0.010</td>
</tr>
<tr>
<td>79</td>
<td>0.005</td>
</tr>
</tbody>
</table>

L denotes less than

NOTE:
Rejects retained two weeks
Pulps retained three months unless otherwise arranged.

BONDAR-CLEGG & COMPANY LTD.
Geochemical Lab Report

FROM: Klon exploration REPORT NUMBER: 40-113
PROJECT: DATE: June 10, 1980

<table>
<thead>
<tr>
<th>SAMPLE NUMBERS</th>
<th>ppm Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>5876</td>
<td>6000</td>
</tr>
<tr>
<td>77</td>
<td>5</td>
</tr>
<tr>
<td>78</td>
<td>10</td>
</tr>
<tr>
<td>79</td>
<td>L5</td>
</tr>
<tr>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>81</td>
<td>5</td>
</tr>
<tr>
<td>82</td>
<td>L5</td>
</tr>
<tr>
<td>83</td>
<td>L5</td>
</tr>
<tr>
<td>84</td>
<td>L5</td>
</tr>
<tr>
<td>86</td>
<td>25</td>
</tr>
</tbody>
</table>

For method, extraction and fraction used - see attached.
Certificate of Analysis

Klon Exploration Co. Ltd.
2615 11th Ave. N.W.,
Calgary, Alberta. Authority: G. J. McGinn

I HEREBY CERTIFY that the following analyses were performed by us on the herein described Pulp samples.

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>Ag opt</th>
<th>Sample Number</th>
<th>Ag opt</th>
<th>Sample Number</th>
<th>Ag opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5876</td>
<td>.018</td>
<td>5894</td>
<td>.011</td>
<td>5912</td>
<td>.011</td>
</tr>
<tr>
<td>77</td>
<td>.030</td>
<td>95</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>.0006</td>
<td>96</td>
<td>.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>.035</td>
<td>97</td>
<td>.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>.011</td>
<td>98</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>.018</td>
<td>99</td>
<td>.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>.011</td>
<td>5900</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>.035</td>
<td>01</td>
<td>.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>.018</td>
<td>02</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>.030</td>
<td>03</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>.023</td>
<td>04</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>.035</td>
<td>05</td>
<td>.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>.030</td>
<td>06</td>
<td>.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>.035</td>
<td>07</td>
<td>.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>.052</td>
<td>08</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>.018</td>
<td>09</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>.023</td>
<td>5910</td>
<td>.0006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>.018</td>
<td>11</td>
<td>.018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Rejects retained one month. Pulps retained three months unless previous arrangements made in advance.

Barringer Magenta Ltd.
Signed

July 29, 1980.
Certificate of Analysis

Klon Exploration,
2615 11 Ave. N.W.,
Calgary, Alberta.

Report No. 80-088W
Date Aug. 11, 1980.

I HEREBY CERTIFY that the following analyses were performed by us on the herein described **Rock** samples.

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>Au opt</th>
<th>Ag opt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5913</td>
<td>Tr</td>
<td>0.330</td>
</tr>
<tr>
<td>5914</td>
<td>Tr</td>
<td>0.340</td>
</tr>
<tr>
<td>5915</td>
<td>Tr</td>
<td>0.375</td>
</tr>
<tr>
<td>5916</td>
<td>Tr</td>
<td>0.320</td>
</tr>
<tr>
<td>5917</td>
<td>Tr</td>
<td>0.400</td>
</tr>
<tr>
<td>5918</td>
<td>Tr</td>
<td>1.280</td>
</tr>
</tbody>
</table>

Note: Rejects retained one month. Pulps retained three months unless previous arrangements made in advance.

Barringer Magenta Ltd.

Signed [Signature]

Address:

3750 - 19th STREET N.E.
SUITE 105
CALGARY, ALBERTA
CANADA T2E 6V2
PHONE: (403) 276-9701
TELEX: 03-827584
To: Mr. G.J. McGinn, 2615 11th Avenue N.W.,
Calgary, Alberta T2N 1H8

File No. 19798
Date August 5, 1980
Samples Pulp

Certificate of
ASSAY
LORING LABORATORIES LTD.

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>OZ./TON GOLD</th>
<th>OZ./TON SILVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Pulp Samples"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5913</td>
<td>Trace</td>
<td>.06</td>
</tr>
<tr>
<td>5914</td>
<td>Trace</td>
<td>.16</td>
</tr>
<tr>
<td>5915</td>
<td>.010</td>
<td>.04</td>
</tr>
<tr>
<td>5916</td>
<td>Trace</td>
<td>.08</td>
</tr>
<tr>
<td>5917</td>
<td>Trace</td>
<td>.02</td>
</tr>
<tr>
<td>5918</td>
<td>Trace</td>
<td>.04</td>
</tr>
</tbody>
</table>

I Herewith Certify that the above results are those assays made by me upon the herein described samples...

Rejects Retained one month.
Pulps Retained one month unless specific arrangements made in advance.

Licensed Assayer of British Columbia
To: Dr. G.J. McGinn,
2675 11th Avenue, N.W.,
Calgary, Alberta T2N 1R6

File No. 19816
Date August 7, 1980
Samples Core

Certificate of Assay
LORING LABORATORIES LTD.

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>OZ./TON GOLD</th>
<th>OZ./TON SILVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Core Samples"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5919</td>
<td>Trace</td>
<td>.04</td>
</tr>
<tr>
<td>5920</td>
<td>Trace</td>
<td>.32</td>
</tr>
<tr>
<td>5921</td>
<td>.010</td>
<td>.16</td>
</tr>
<tr>
<td>5922</td>
<td>Trace</td>
<td>.04</td>
</tr>
<tr>
<td>5923</td>
<td>Trace</td>
<td>.02</td>
</tr>
<tr>
<td>5924</td>
<td>Trace</td>
<td>.06</td>
</tr>
<tr>
<td>5925</td>
<td>Trace</td>
<td>.12</td>
</tr>
<tr>
<td>5926</td>
<td>Trace</td>
<td>.06</td>
</tr>
<tr>
<td>5927</td>
<td>Trace</td>
<td>.04</td>
</tr>
<tr>
<td>5928</td>
<td>Trace</td>
<td>.06</td>
</tr>
<tr>
<td>5929</td>
<td>Trace</td>
<td>.54</td>
</tr>
<tr>
<td>5930</td>
<td>Trace</td>
<td>.08</td>
</tr>
<tr>
<td>5931</td>
<td>Trace</td>
<td>.42</td>
</tr>
<tr>
<td>5932</td>
<td>Trace</td>
<td>.50</td>
</tr>
</tbody>
</table>

I hereby certify that the above results are those assays made by me upon the herein described samples.

Rejects Retained one month.
Pulps Retained one month unless specific arrangements made in advance.

Licensed Assayer of British Columbia
To: Mr. G.J. McGinn,
2615 — 11th Avenue N.W.,
Calgary, Alberta T2N 1H8

File No. 19799
Date August 5, 1980
Samples Core

Certificate of
ASSAY
LORING LABORATORIES LTD.

<table>
<thead>
<tr>
<th>SAMPLE No.</th>
<th>OZ./TON GOLD</th>
<th>OZ./TON SILVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Core Samples"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5933</td>
<td>Trace</td>
<td>.02</td>
</tr>
<tr>
<td>5934</td>
<td>Trace</td>
<td>.02</td>
</tr>
<tr>
<td>5935</td>
<td>Trace</td>
<td>.08</td>
</tr>
<tr>
<td>5936</td>
<td>Trace</td>
<td>.02</td>
</tr>
<tr>
<td>5937</td>
<td>Trace</td>
<td>.06</td>
</tr>
</tbody>
</table>

I Hereby Certify THAT THE ABOVE RESULTS ARE THOSE
ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES

Rejects Retained one month.
Pulps Retained one month
unless specific arrangements
made in advance.

Licensed Assayer of British Columbia
X-Ray Assay Laboratories Ltd.
1885 Leslie Street,
Don Mills, Ontario
M3B 3J4

Attention: Dr. T. Brooker

Re: Mineral identification in sample #4468

A polished thin section of the sample was prepared for optical examination.

The mineral is developed in thin sheets parallel to the foliation and is locally locked in mica flakes. The color is white with a light blueish-grey tinge and a reflectivity in the range of 25-30%. The reflection pleochroism is very weak and the anisotropy undercrossed nicols is plainly visible especially in oil. Red internal reflections are abundant in oil especially in the small crystals.

The mineral has been partially altered in goethite providing further red internal reflections with a marked yellowish tinge.

The mineral is hematite partially altered in goethite.

J.-J. Lefebvre
REPORT 8453 REF. FILE 4468-G1 30-SEP-80

TO: G.J. MCGINN
 2615-11 AVE. N.W.,
 CALGARY, ALTA.
 T2N 1H6

1 W. CORE SUBMITTED ON 11-AUG-80

<table>
<thead>
<tr>
<th>ELEMENT SENS*</th>
<th>EL-4-502</th>
<th>ELEMENT SENS*</th>
<th>EL-4-502</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIMONY</td>
<td>(4)</td>
<td>MANGANESE</td>
<td>(1)</td>
</tr>
<tr>
<td>ARSENIC</td>
<td>(4)</td>
<td>MERCURY</td>
<td>(4)</td>
</tr>
<tr>
<td>BERYLLIUM</td>
<td>(2)</td>
<td>MOLYBDENUM</td>
<td>(3)</td>
</tr>
<tr>
<td>BISMUTH</td>
<td>(2)</td>
<td>NICKEL</td>
<td>(1)</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>(4)</td>
<td>SILVER</td>
<td>(1)</td>
</tr>
<tr>
<td>CERIUM</td>
<td>(5)</td>
<td>TANTALUM</td>
<td>(5)</td>
</tr>
<tr>
<td>NIOBIUM</td>
<td>(4)</td>
<td>THORIUM</td>
<td>(3)</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>(4)</td>
<td>TIN</td>
<td>(2)</td>
</tr>
<tr>
<td>COBALT</td>
<td>(3)</td>
<td>TITANIUM</td>
<td>(2)</td>
</tr>
<tr>
<td>COPPER</td>
<td>(1)</td>
<td>TUNGSTEN</td>
<td>(4)</td>
</tr>
<tr>
<td>GALLIUM</td>
<td>(2)</td>
<td>URANIUM</td>
<td>(3)</td>
</tr>
<tr>
<td>GERMANIUM</td>
<td>(1)</td>
<td>VANADIUM</td>
<td>(2)</td>
</tr>
<tr>
<td>IRON</td>
<td>(2)</td>
<td>YTTRIUM</td>
<td>(3)</td>
</tr>
<tr>
<td>LEAD</td>
<td>(2)</td>
<td>ZINC</td>
<td>(4)</td>
</tr>
<tr>
<td>LITHIUM</td>
<td>(4)</td>
<td>ZIRCONIUM</td>
<td>(4)</td>
</tr>
</tbody>
</table>

LEGEND

<table>
<thead>
<tr>
<th>*SENSITIVITY (LIMIT OF DETECTION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 0.0005-0.001%</td>
</tr>
<tr>
<td>2 - 0.001-0.005%</td>
</tr>
<tr>
<td>3 - 0.005-0.01%</td>
</tr>
<tr>
<td>4 - 0.01-0.05%</td>
</tr>
<tr>
<td>5 - 0.05-0.1%</td>
</tr>
</tbody>
</table>

NOTE: BETTER SENSITIVITIES CAN BE OBTAINED WITH SPECIAL TECHNIQUES, IF AND WHEN REQUIRED.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>AU OZ/TON</th>
<th>AG OZ/TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL-4-502</td>
<td>TRACE</td>
<td>NIL</td>
</tr>
</tbody>
</table>
X-RAY ASSAY LABORATORIES LIMITED

1885 LESLIE STREET, DON MILLS, ONTARIO M3B 3J4
PHONE 416-445-5755 TELEX 06-986947

CERTIFICATE OF ANALYSIS

TO: G.J. MCGINN
2615 - 11 AVE. N.W.
CALGARY, ALTA.
T2N 1H6

REPORT 8453 REF. FILE 4468-G1

1 W. CORE SUBMITTED ON 11-AUG-80

WERE ANALYSED AS follows:

<table>
<thead>
<tr>
<th>UNITS</th>
<th>METHOD</th>
<th>DETECTION LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU OZ/TON</td>
<td>FA</td>
<td>0.010</td>
</tr>
<tr>
<td>AG OZ/TON</td>
<td>FA</td>
<td>0.200</td>
</tr>
<tr>
<td>30 ELEMENT</td>
<td>EMS</td>
<td></td>
</tr>
</tbody>
</table>

DATE 30-SEP-80

CERTIFIED BY

J.H. ORDEBEECK
X-RAY ASSAY LABORATORIES LIMITED
1835 LESLIE STREET, DON MILLS, ONTARIO M3B 3J4
PHONE 416-445-5755 TELEX 66-99947

CERTIFICATE OF ANALYSIS

TO: G.J. McGinn
2615 - 11TH AVENUE N.W.
CALGARY, ALBERTA.
T2N 1H8

REPORT 3365
REF. FILE 5090-A4

25 PULPS SUBMITTED ON 17-SEP-30
WERE ANALYSED AS FOLLOWS:

<table>
<thead>
<tr>
<th>UNITS</th>
<th>METHOD</th>
<th>DETECTION LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.200</td>
<td></td>
</tr>
</tbody>
</table>

DATE 22-SEP-30

CERTIFIED BY
J.H. DOBBEECK
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>AG OZ/TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>5913</td>
<td>NIL</td>
</tr>
<tr>
<td>5914</td>
<td>NIL</td>
</tr>
<tr>
<td>5915</td>
<td>NIL</td>
</tr>
<tr>
<td>5916</td>
<td>NIL</td>
</tr>
<tr>
<td>5917</td>
<td>NIL</td>
</tr>
<tr>
<td>5918</td>
<td>NIL</td>
</tr>
<tr>
<td>5919</td>
<td>NIL</td>
</tr>
<tr>
<td>5920</td>
<td>NIL</td>
</tr>
<tr>
<td>5921</td>
<td>NIL</td>
</tr>
<tr>
<td>5922</td>
<td>NIL</td>
</tr>
<tr>
<td>5923</td>
<td>NIL</td>
</tr>
<tr>
<td>5924</td>
<td>TRACE</td>
</tr>
<tr>
<td>5925</td>
<td>NIL</td>
</tr>
<tr>
<td>5926</td>
<td>NIL</td>
</tr>
<tr>
<td>5927</td>
<td>NIL</td>
</tr>
<tr>
<td>5928</td>
<td>NIL</td>
</tr>
<tr>
<td>5929</td>
<td>NIL</td>
</tr>
<tr>
<td>5930</td>
<td>NIL</td>
</tr>
<tr>
<td>5931</td>
<td>NIL</td>
</tr>
<tr>
<td>5932</td>
<td>NIL</td>
</tr>
<tr>
<td>5933</td>
<td>NIL</td>
</tr>
<tr>
<td>5934</td>
<td>NIL</td>
</tr>
<tr>
<td>5935</td>
<td>NIL</td>
</tr>
<tr>
<td>5936</td>
<td>NIL</td>
</tr>
<tr>
<td>5937</td>
<td>NIL</td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

TO: G. J. McGinn
2615 - 11TH AVENUE N.W.
CALGARY, ALBERTA.
T2N 1H8

REPORT 3365

25 PULPS SUBMITTED ON 17-SEP-80
WERE ANALYSED AS FOLLOWS:

<table>
<thead>
<tr>
<th>UNITS</th>
<th>METHOD</th>
<th>DETECTION LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>OZ/TON</td>
<td>FA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.200</td>
</tr>
</tbody>
</table>

DATE 22-SEP-80

CERTIFIED BY

J.H. OPDEBEECK
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>AG OZ/TON</th>
</tr>
</thead>
<tbody>
<tr>
<td>5913</td>
<td>NIL</td>
</tr>
<tr>
<td>5914</td>
<td>NIL</td>
</tr>
<tr>
<td>5915</td>
<td>NIL</td>
</tr>
<tr>
<td>5916</td>
<td>NIL</td>
</tr>
<tr>
<td>5917</td>
<td>NIL</td>
</tr>
<tr>
<td>5918</td>
<td>NIL</td>
</tr>
<tr>
<td>5920</td>
<td>NIL</td>
</tr>
<tr>
<td>5921</td>
<td>NIL</td>
</tr>
<tr>
<td>5922</td>
<td>NIL</td>
</tr>
<tr>
<td>5923</td>
<td>NIL</td>
</tr>
<tr>
<td>5924</td>
<td>TRACE</td>
</tr>
<tr>
<td>5925</td>
<td>NIL</td>
</tr>
<tr>
<td>5926</td>
<td>NIL</td>
</tr>
<tr>
<td>5927</td>
<td>NIL</td>
</tr>
<tr>
<td>5928</td>
<td>NIL</td>
</tr>
<tr>
<td>5929</td>
<td>NIL</td>
</tr>
<tr>
<td>5930</td>
<td>NIL</td>
</tr>
<tr>
<td>5931</td>
<td>NIL</td>
</tr>
<tr>
<td>5932</td>
<td>NIL</td>
</tr>
<tr>
<td>5933</td>
<td>NIL</td>
</tr>
<tr>
<td>5934</td>
<td>NIL</td>
</tr>
<tr>
<td>5935</td>
<td>NIL</td>
</tr>
<tr>
<td>5936</td>
<td>NIL</td>
</tr>
<tr>
<td>5937</td>
<td>NIL</td>
</tr>
</tbody>
</table>
TRANSMITTAL SHEET

TO: REGIONAL MANAGER MINERAL RIGHTS
WHITEHORSE, YUKON TERRITORY

FROM: DAWSON MINING DISTRICT

NEW APPLICATION FOR PLACER LEASE TO PROSPECT: NAME

RENEWAL OF PLACER LEASE TO PROSPECT: NAME

AFFIDAVIT OF EXPENDITURE ON PLACER LEASE: NAME

LEASE NO.

ASSIGNMENT OF PLACER LEASE NO.

FROM ________________ TO ________________

GROUPING APPLICATION UNDER SECTION 52(2) PLACER MINING ACT

OWNER ______________________ DAWSON GROUPING NO. ______________________

DIAMOND DRILL LOGS CLAIM ______________________ CLAIM SHEET NO. ________________

QUARTZ ASSESSMENT REPORT CLAIM ______________________ CLAIM SHEET NO. ________________

Type of Report: Submitted By:
C.I.S. work performed on: $ Req. for rend. application: ________________

B. J. PROUDFOOT
MINING RECORDER

REPLY ACTION:

DATE SENT: 5/Jan/82
DATE RECEIVED BY WHITEHORSE: 26-Jan-82

091463
January 5th, 1982

Mr. D. F. Jennings,
Mining Recorder,
Dawson Mining District,
Box 249,
Dawson City, Yukon Territory.

Dear Mr. Jennings:

In answer to your letter of May 13th, 1981,
I enclose an accounting statement of our 1980 program.
The following is an approximate breakdown between expenses on Quartz Claims and leased placer rights.

<table>
<thead>
<tr>
<th></th>
<th>Quartz Claims</th>
<th>Placer Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Diamond Drilling</td>
<td>63,874.54</td>
<td>51,704.00</td>
</tr>
<tr>
<td>Midnight Sun Drilling</td>
<td>22,532.02</td>
<td>11,266.01</td>
</tr>
<tr>
<td>Engineering fees & supervision</td>
<td>3,662.67</td>
<td>1,831.33</td>
</tr>
<tr>
<td>Prospecting expenses</td>
<td>520.00</td>
<td></td>
</tr>
<tr>
<td>Line cutting</td>
<td>400.00</td>
<td></td>
</tr>
<tr>
<td>Claim staking</td>
<td>162.00</td>
<td></td>
</tr>
<tr>
<td>Staking fees</td>
<td>6,497.00</td>
<td>1,000.00</td>
</tr>
<tr>
<td>Instrument rentals</td>
<td>10,880.05</td>
<td>5,439.95</td>
</tr>
<tr>
<td>Engineers helpers</td>
<td>16,955.27</td>
<td>8,477.64</td>
</tr>
<tr>
<td>Camp & field expenses</td>
<td>125,483.55</td>
<td>79,718.93</td>
</tr>
</tbody>
</table>

Sincerely yours,

G. J. McGinn, P.Eng.
President,
Klon Exploration Co. Ltd.
December 11, 1981.

Mr. G.J. McGinn, President
Klon Exploration Co. Ltd.
2615 - 11th Avenue N.W.
Calgary, Alberta.
T2N 1H8

Dear Sir;

With respect to Klon Exploration Co. Ltd. expenses re: Ron Claims in the Eldorado Creek area, the following is an analysis of such expenses:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artic Diamond Drilling</td>
<td>$63,874.54</td>
</tr>
<tr>
<td>Midnight Sun Drilling</td>
<td>51,704.00</td>
</tr>
<tr>
<td>Engineering fees and supervision</td>
<td>33,798.03</td>
</tr>
<tr>
<td>Prospecting expenses</td>
<td>5,494.00</td>
</tr>
<tr>
<td>Line cutting - casual labour</td>
<td>520.00</td>
</tr>
<tr>
<td>Claim staking - casual labour</td>
<td>400.00</td>
</tr>
<tr>
<td>Staking fees</td>
<td>162.00</td>
</tr>
<tr>
<td>Instrument rentals</td>
<td>7,497.00</td>
</tr>
<tr>
<td>Salaries and wages - engineers' helpers</td>
<td>16,320.00</td>
</tr>
<tr>
<td>Camp and field expenses</td>
<td>25,432.91</td>
</tr>
<tr>
<td>Total</td>
<td>$205,202.48</td>
</tr>
</tbody>
</table>

I trust that this is the information you require.

Yours faithfully,

W.E. Allan, C.A.

WEA/baa
MAGNETIC PROFILE = LINE 113