ASSESSMENT REPORT
GEOLOGY AND GEOCHEMISTRY
GAMMON CLAIMS
WHITEHORSE MINING DISTRICT

091068
GAMMON 1-6 (YA 51432 - YA 51437)

NTS 105 D/16
LATITUDE: 60°53' North
LONGITUDE: 134°13' West

By: Phil D. Van Angeren
TABLE OF CONTENTS

1. INTRODUCTION
 1.1 General
 1.2 Location and Access
 1.3 Physiography and Vegetation

2. GEOLOGY
 2.1 Regional Geology
 2.2 Claim Geology

3. GEOCHEMISTRY

4. REFERENCES

LIST OF APPENDICES

Appendix A List of Claim Names and Grant Numbers
Appendix B Analytical Methods and Geochemical Results
Appendix C Statement of Costs
Appendix D Statement of Qualification

LIST OF FIGURES

Figure 1 GAMMON Claims 1-6
Figure GAMMON Claims 1-6, Geology and Geochemical Sample Locations
1. INTRODUCTION

1.1 General

This report describes geological mapping and geochemical sampling carried out by AGIP Canada Ltd. on GAMMON claims 1-6 (YA 51432 to YA 51437 inclusive) on July 12, 1982.

1.2 Location and Access

The GAMMON claims are located 45 kilometers northeast of Whitehorse, seven kilometers southeast of Mount Byng, in NTS map sheet 105 D/16. Claim distribution is shown in Figure 1.

Access to the claim block is by helicopter from Whitehorse.

1.3 Physiography and Vegetation

The GAMMON claims are located on a small plateau at the junction of two ridges which trend north and northeast. This plateau is at 1500 meters ASL. Vegetation consists of sparse alpine shrubs and moss above 1400 meters ASL.

2. GEOLOGY

2.1 Regional Geology

The GAMMON 1-6 claims are located outside the eastern edge of the Mount Byng Tertiary volcanic complex. This complex, of intermediate to acid composition, has intruded and overlain both Triassic sediments (siltstone, greywacke and limestone) and Cretaceous granodiorite intrusions (Morrison, 1979).
2.2 Claim Geology

Only two outcrops occur on the claim block. Both are of massive, equigranular, hornblende granodiorite (Figure 2). However, much of the glacial till, which covers the remainder of the claim block, consists of boulders of Triassic sediments. A minor portion of this till also consists of angular boulders of siliceous feldspar porphyry, probably related to the Tertiary volcanic complex.

Jointing in the granodiorite trends in a northwesterly direction. The granodiorite is in fault contact with Triassic siltstones to the southwest of the claim group.

3. GEOCHEMISTRY

Soil sampling was carried out on a small grid in the south-eastern half of the claim block. Soil samples were taken at 50 meter intervals along lines 50 and 100 meters apart (Figure 2). Each sample was analysed for uranium, gold, silver, arsenic and mercury. Results are shown in Appendix B.

There is a very low background concentration for all elements, and no further work is justified.

4. REFERENCES

Morrison, Greg W., 1979: Metallogenic Map, Whitehorse, Map Area Yukon, Open File E.G.S., 1979-6, Department of Indian Affairs and Northern Development, Yukon.
APPENDIX A

List of claim names and grant numbers:

GAMMON 1
GAMMON 2
GAMMON 3
GAMMON 4
GAMMON 5
GAMMON 6
YA 51432
YA 51433
YA 51434
YA 51435
YA 51436
YA 51437
ANALYTICAL METHODS AND GEOCHEMICAL RESULTS

ANALYTICAL METHODS

All geochemical samples were prepared and analysed by Bondar Clegg in Whitehorse.

Soil samples were sieved to -80 mesh and a split of this fraction was analysed.

Uranium analyses were by hot concentrated nitric acid digestion and fluorimetric determination.

Silver was analysed by atomic absorption techniques, after the sample was dissolved in hot aqua regia.

Gold was analysed by the carbon rod atomic absorption method after the sample was digested in a hydro bromic acid bromine solution.

The arsenic content was determined by colorimetry after dissolving the sample in an HClO₄-HNO₃ arsine solution.

Mercury was analysed by dissolving the sample in aqua regia followed by a closed cell, flameless atomic absorption determination.
APPENDIX B

GEOCHEMICAL RESULTS

<table>
<thead>
<tr>
<th>Sample #</th>
<th>U (ppm)</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>As (ppm)</th>
<th>Hg (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1033000</td>
<td>1.0</td>
<td><2</td>
<td>0.3</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>1033001</td>
<td>0.5</td>
<td><2</td>
<td>0.3</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>1033002</td>
<td>0.4</td>
<td><2</td>
<td>0.4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1033003</td>
<td>1.1</td>
<td><2</td>
<td>0.2</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>1033004</td>
<td>0.5</td>
<td><2</td>
<td>0.1</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>1033005</td>
<td>2.1</td>
<td><2</td>
<td>0.2</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>1033006</td>
<td>0.4</td>
<td><2</td>
<td>0.2</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>1033007</td>
<td>2.6</td>
<td><2</td>
<td>0.3</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>1033008</td>
<td>1.1</td>
<td>3</td>
<td>0.1</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>1033009</td>
<td>1.0</td>
<td>3</td>
<td>0.2</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>1033010</td>
<td>3.3</td>
<td><2</td>
<td>0.2</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>1033011</td>
<td>2.3</td>
<td>2</td>
<td>0.3</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>1033012</td>
<td>7.0</td>
<td><2</td>
<td>0.3</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>1033013</td>
<td>2.7</td>
<td><2</td>
<td><0.1</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>1033014</td>
<td>3.0</td>
<td>3</td>
<td>0.3</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>1033015</td>
<td>2.3</td>
<td><2</td>
<td>0.2</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>1033016</td>
<td>2.8</td>
<td>2</td>
<td>0.3</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>1033017</td>
<td>2.0</td>
<td><2</td>
<td>0.2</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>1033018</td>
<td>2.2</td>
<td><2</td>
<td>0.1</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>1033019</td>
<td>1.9</td>
<td><2</td>
<td>0.1</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>1033020</td>
<td>2.1</td>
<td><2</td>
<td><0.1</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>1033021</td>
<td>2.6</td>
<td><2</td>
<td>0.2</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>1033022</td>
<td>0.4</td>
<td><2</td>
<td>0.2</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1033023</td>
<td>0.2</td>
<td><2</td>
<td>0.2</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>1033024</td>
<td>0.7</td>
<td>2</td>
<td>0.3</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>1033025</td>
<td>0.5</td>
<td><2</td>
<td>0.2</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>1033026</td>
<td>0.2</td>
<td><2</td>
<td>0.2</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>1033027</td>
<td>0.2</td>
<td><2</td>
<td>0.2</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>1033028</td>
<td>0.5</td>
<td><2</td>
<td>0.1</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>1033029</td>
<td>0.4</td>
<td>2</td>
<td>0.4</td>
<td>I.S.</td>
<td>I.S.</td>
</tr>
<tr>
<td>1033030</td>
<td>0.3</td>
<td><2</td>
<td>0.1</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>1033031</td>
<td>0.9</td>
<td><2</td>
<td>0.2</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1033032</td>
<td>0.6</td>
<td><2</td>
<td>0.1</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>1033033</td>
<td>1.5</td>
<td><2</td>
<td>0.3</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>1033034</td>
<td>0.4</td>
<td><2</td>
<td>0.2</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td>1033035</td>
<td>1.0</td>
<td>3</td>
<td>0.3</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>1033036</td>
<td>1.1</td>
<td><2</td>
<td>0.1</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>1033037</td>
<td>2.3</td>
<td><2</td>
<td><0.1</td>
<td>8</td>
<td>45</td>
</tr>
<tr>
<td>1033038</td>
<td>0.4</td>
<td>6</td>
<td>0.2</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>1033039</td>
<td>1.0</td>
<td><2</td>
<td>0.2</td>
<td>7</td>
<td>20</td>
</tr>
</tbody>
</table>

I.S.: Insufficient sample
APPENDIX C

STATEMENT OF COSTS

Labour

P. Van Angeren, Project Geologist @ $120/day
- 1 field day, 1 day report preparation $ 240.00
M. Laing, Junior Assistant @ $58/day
- 1 field day 58.00

TOTAL LABOUR COSTS $ 298.00

Helicopter Costs

Hughes 500 D helicopter contracted from Canwest Helicopters, Calgary, Alberta
- 0.5 hours @ $450/hour (mob/demob) $ 225.00
- Fuel, estimated @ 25 gal/hr @ $2/gal 25.00

TOTAL HELICOPTER COSTS $ 250.00

Analytical Costs

40 soil samples @ $19.45/sample $ 778.00

TOTAL ANALYTICAL COSTS $ 778.00

Food and Camp Supplies

Food, estimated @ $20/man-day (2 man-days) $ 40.00
Supplies, estimated @ $10/day (1 day) 10.00

TOTAL FOOD AND CAMP SUPPLIES $ 50.00

Drafting and Typing Costs

Drafting (estimated) $ 50.00
Typing (estimated) 50.00

TOTAL DRAFTING AND TYPING COSTS $ 100.00

TOTAL 1982 $1,476.00
I, PHIL D. VAN ANGEREN, of the city of Calgary in the province of Alberta hereby certify:

That I am a geologist employed by AGIP Canada Ltd. and I caused to be performed the work described in this report.

That I obtained a Bachelor of Science degree with honours in Geology from McGill University in Montreal in 1977.

That I have been engaged in mineral exploration on a full-time and part-time basis for seven years, four of which have been in the Yukon Territories and British Columbia.

Signed at Whitehorse, Yukon Territory this 6th day of September, 1982.

Phil D. Van Angeren