
	EATE SENT: DUE - 1018
CHANSMITTAL SHEET	DATE RECEIVED BY WHITEHORSE
TO: REGIONAL MANAGER MINERAL RIGHTS WHITEHORSE, YUKON TERRITORY	DEC 1 5 1981
FROM: DAWSON MINING DISTRICT	The Mercell Contraction
NEW APPLICATION FOR PLACER LEASE TO PROSPECT:	NAME
RENEWAL OF PLACER LEASE TO PROSPECT:	NAME
AFFIDAVIT OF EXPENDITURE ON PLACER LEASE:	NAME
LEAS	SE NO
ASSIGNMENT OF PLACER LEASE NO	
FROM	TO
OWNER	DAWSON GROUPING NO
DIAMOND DRILL LOGS CLAIM Pluto	CLAIM SHEET NO. 116-C-8
QUARTZ ASSESSMENT REPORT CLAIM	CLAIM SHEET NO
Type of Report:	Submitted By: Comined
Type of Report: C.I.S. work performed on: <i>Plute</i> ;	
	28,30,32-34

REPLY ACTION:

GEOLOGICAL CONTA APPROXIMATE INFERRED ACCESS TRAILS ROADS 1980 TRENCHING 1981 DIAMOND DRI HOLE WITH NUMBE	LL
	90916
Ma	90910
TO CLAIMS	N.T.S. 116 C/8
vised by Date REGIONAL GEOLOGY	
and SUMMARY OF WORK DONE	
Scale: 1: 20,000 Date: NOV. 1981	^{Plate:} 1
	FORM 210 0660

PALEOZOIC or PROTEROZOIC QUARTZITE, BIOTITE -CHLORITE SCHIST

NASINA QUARTZITE, PHYLLITE, LIMESTONE

PALEOZOIC

MONZONITE QUARTZ - FELDSPAR PORPHYRY

TERTIARY **BIOTITE – AUGITE**

CRETACEOUS or **EARLY**

PALEOCE	NE INTRUSIVES
	MGP (middle granite porphyry)
	K-feldspar + quartz + fluorite pegmatite
	NQFP (northern quartz feldspar porphyry)
	QBFP (quartz biotite feldspar porphyry)
	crowded porphyry (phase of QBFP)
PALEOZO	IC OR PROTEROZOIC METASEDIMENTS
	siliceous cataclasite with bands rich in biotite, muscovite and feldspar; minor disseminated pyrrhotite (meta-impure quartzite)
	actinolite + chlorite + biotite + quartz + pyrrhotite pyrite cataclasite (meta - marl or tuff)
	dark green massive tremolite rock with minor biotite and pyrite.
	streaky green and brown biotite + diopside + hornblende ± plagioclose ± garnet ± magnetite skarn

	brecciated zone
	crowded: porphyry
~	banded quartz in QEP or "brain" texture

C	siliceous	QMP	quartz + muscovite +
	cataclasite	sph	sphalerite
	biotite	phlog	phlogopite
in	actinolite	kf	K - feldspar
	chlorite	f I	fluorite
	pyrrhotite	plag	plagioclose
	pyrite	peg	pegmatite
	quartz	сру	chalcopyrite
52	molybdenite	hbl	hornblende
s c	muscovite	gt	garnet
	wolframite	diop	diopside
		m a 6 0	magnetite

					PLU	то
Drawn by	IAP	Traced b	y: APR			01 1 .
Revised by	Date	Revised by	Date		DDH	81-1 t
					SUMMARY	LOGS A
					ROCK	GEOCH
				Scale:	1:500	Date: Oct.

LEGEND

PAL	E	Ο	С	E	Ν	E	11

EOCENE	INTRUSIVES
	MGP(middle_granite_porphyry)
	K - feldspar + quartz + fluorite pegmatite
	NQFP (northern quartz feldspar porphyry)
	QBFP (quartz biotite feldspar porphyry)
> /	crowded porphyry (phase of QBFP)
LEOCENE	OR PROTEROZOIC METASEDIMENTS
	siliceous cataclasite with bands rich in biotite, muscovite and feldspar; minor disseminated pyrrhotite (meta - impure quartzite)
	actinolite + chlorite + biotite + quartz + pyrrhotite pyrite cataclasite (meta - marl or tuff)
	dark green massive tremolite rock with minor biotite and pyrite
	streaky green and brown biotite + diopside + hornblende

SYMBOLS

\bigtriangleup	b
\diamond	C r
~~	h

NCI - 117 - C.L.

precciated zone rowded porphyry banded quartz in QFP or "brain" texture

<u>+ plagioclose + garnet + magnetite</u>_skarn.

ABBREVIATIONS

silic	siliceous	QMP	quartz + muscovite + pyr
cat	cataclasite	sph	sphalerite
bt	biotite	phlog	phlogopite
actin	actin olite	kf	K – feldspar
chl	chlorite	f 1	fluorite
ро	pyrrhotite	plag	plagioclose
ру	pyrite	peg	pegmatite
gtz	quartz	сру	chalcopyrite
MoS2	molybdenite	hbl	hornblende
musc	muscovite	gt	garnet
wo	wolframite	diop	diopside
		magn	magnetite

gtz+bt porphyry (QBP) 5-10% euhedral 3 mm gtz 5% 3 mm bt set in fine grained hypidiomorphic granular matrix MGP note inclusions of med gr granite porphyry from 167' to 168' QBP, contact at 178' is sharp mixed MGP and QBP c.gr MGP with 3% bt

casing in talus

qtz + bt + chl cat

Icm gtz and kf megacrysts -5% kf pheno.

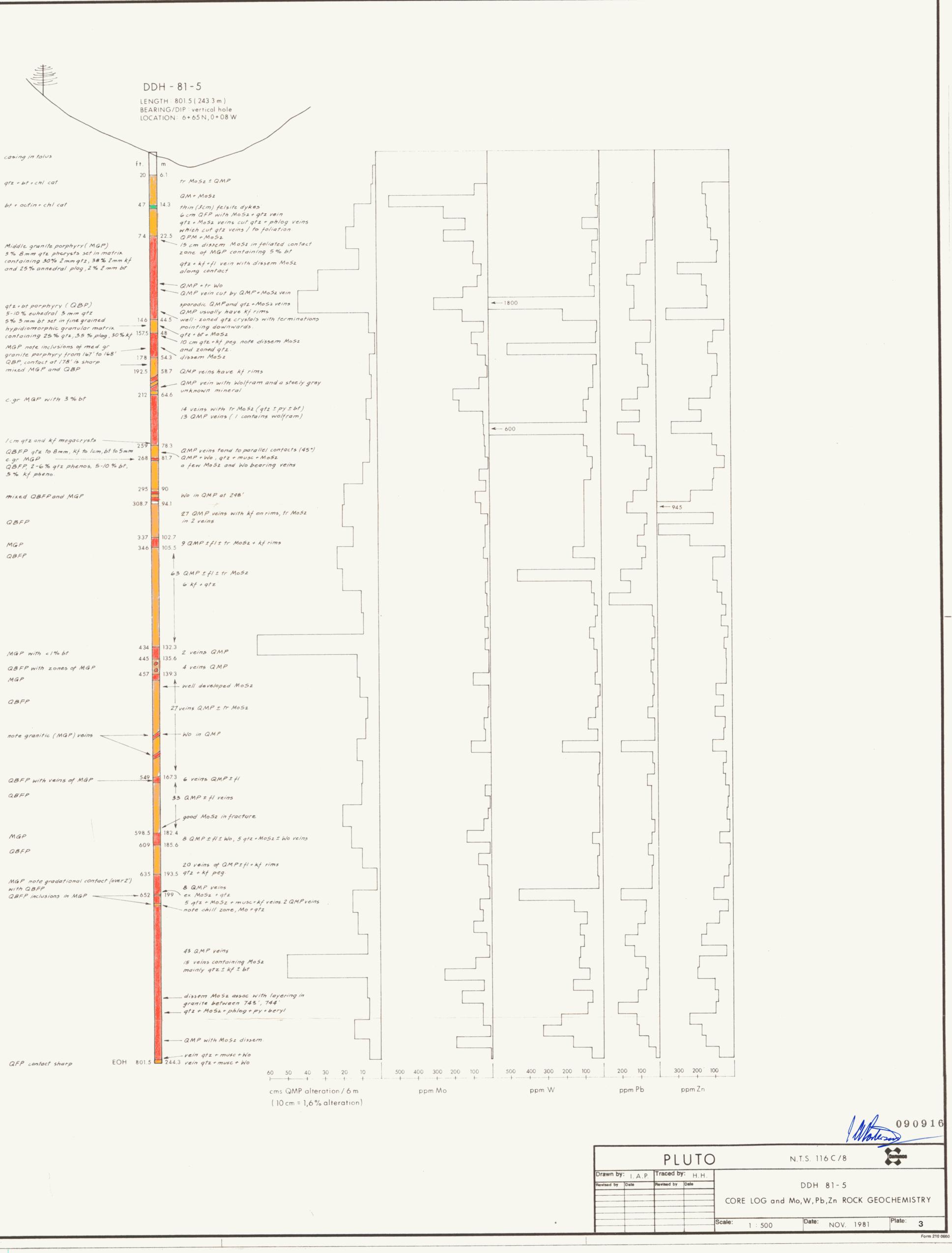
mixed QBFP and MGP

QBFP

QBFP

MGP

MGP with <1% bt QBFP with zones of MGP MGP QBFP


QBFP with veins of MGP -QBFP

MGP

QBFP

with QBFP QBFP inclusions in MGP

EXPLORATION NTS: 116C/8

WESTERN DISTRICT

 $\sum_{i=1}^{n} i_{i}$

PLUTO GROUP

DAWSON M.D., YUKON TERRITORY LATITUDE: 64⁰20'N; LONGITUDE: 140⁰22'W ASSESSMENT REPORT FOR DIAMOND DRILLING PROGRAM ON MINERAL CLAIMS PLUTO 28, 30, 32, 33 AND 34 DURING THE PERIOD 10 JULY TO 4 AUGUST 1981

DECEMBER 1981

090916

I.A. PATERSON

TABLE OF CONTENTS

-	Location Map
-	Regional Geology and Location of Diamond Drill Holes.
-	Plan and cross sections for DDH-81-1, 81-2, 81-3 and 81-4 at scales of 1:5000 and 1:500, respectively.
-	Cross section for DDH-81-5.
	-

Appendix I - Drill Core logs for DDH-81-1, 81-2, 81-3, 81-4 and 81-5. Statement of Expenditures - Exhibit "A" Statement of Qualifications - Exhibit "B" - Exhibit "C"

Report by:

I.A. Paterson Project Geologist

Endorsed by

D.L. Cooke

Senior Geologist

Approved for Release by:

N. N. Mall

W.J. Wolfe, Assistant Manager Exploration Western District

IAP/vmk

Property PLUTO		District Dawson, Y.T.	Hole No. 81-1	••••••••••••••••••••••••••••••••••••••	(26 m)		d 33		-60	(765 m)
Commenced 13 Ju		Location NTS: 116C/8	0.0				an	0	[]]	1 -
	uly, 1981	Core Size NQ)	34	54(ta 1	2510
Co-ordinates 8+50	NW (on "new" baseli	ine)	Tide Dig.						1- 1	
		e of W-Mo geochemical anomaly	in % Recov. 95 - 100	1% Date to Jury	1901		lain	ä	ello	Elev.
	f northern porphyry	¥			Isamole	L enath	Anal	ysis	-b	<u>بس</u>
Footage From To	Description				No.				Sn 1	<u> </u>
0 33'	Overburden conta	ining silt with QFP and amphi	ibolite boulders.				_]	<u>↓'</u>	1
33' - 51'		een decomposed amphibolite sch			l		1	 	¦ '	-
51' - 52'	Brown and black g	gouge zone.						<u> </u>	·'	
52' - 56'			porphyry with 10 to 20% 8 mm	n white feldspar pheno-	51- 56	5 5	44) <20	
	and the second s				56- 60) 4	77	+	· • · · · · · • •	+
56' - 121'					60-70	10	28	++	2 <20	
					70-80	10	17	++	+	
					80-90	10	19			-+
					90-100	10	17	11		-
121' - 124.5'		treaky siliceous cataclasites.		Tests at-Hor. Comp.118' (36 m)ECorr. Dip -60° Vert. Comp.186' (56.7 m)KTrue Brg. 240°Logged byIAPK% Recov.95 - 100%Date16 July1981E% Becov.95 - 100%Date16 July1981K% Becov.95 - 100%SampleLengthAnalys% Becov.95 - 100%Note10 20%KK% Becov.90 10 20%8 mm white feldspar pheno-51 - 56544% de of contact unknown.56 - 6047710.se t chloritic cataclasites with crosscutting60 - 701028fication from 56' to 60', 68' to 69', 72.8'70 - 801017Note the presence of andesitic-feldspar80 - 901017.note the presence of andesitic-feldspar90 -1001017.note the presence of andesitics).110 -1211019.note the presence of andesites).110 -121	+					
124.5 - 127'				aclasites).	110-121	10	19	150	<20'	4
127' - 219'						<u> </u>	_ _	↓!	<u> </u> '	
						<u> </u>		<u> </u> '	 '	1
	146',159'						_	<u> </u> '	_ '	4
	to 160',			it - Hor. Comp.118' (36 m) Fer O hip -60° Vert. Comp.186' (56.7 m) 7						
		• - gouge zones	True Brg. 240° Logged by IAPly in % Recov. 95 - 100%Date 16 July 1981hibolite boulders.Image: Sample No.chist (casing to 47').Image: Sample No.porphyry with 10 to 20% 8 mm white feldspar pheno-51-56; attitude of contact unknown.56-60lagioclase \pm chloritic cataclasites with crosscutting 60-70d silicification from 56' to 60', 68' to 69', 72.8'70-80to 121'. Note the presence of andesitic-feldspar80-90ia. Quartz and muscovite occur along late fractures.90-100s.100-11010e schist (recrystallized cataclasites).110-121with bands rich in biotite \pm muscovite. DisseminatedImage: Core angles 60° to 80°.	<u> </u>	ļ'	ļ'				
	172'-178'	' - rusty schistose muscovite	spar porphyry with 10 to 20% 8 mm white feldspar pheno- trix; attitude of contact unknown. <u>+</u> plagioclase <u>+</u> chloritic cataclasites with crosscutting n and silicification from 56' to 60', 68' to 69', 72.8' .5' to 121'. Note the presence of andesitic-feldspar reccia. Quartz and muscovite occur along late fractures. sites. ovite schist (recrystallized cataclasites). tes with bands rich in biotite <u>+</u> muscovite. Disseminated s. Core angles 60 ⁰ to 80 ⁰ .		_		<u> </u> '	_ '		
		' - biotite rich zones	zation and silicification from 56' to 60', 68' to 69', nd 91.5' to 121'. Note the presence of andesitic-felds the breccia. Quartz and muscovite occur along late fra taclasites. muscovite schist (recrystallized cataclasites). clasites with bands rich in biotite ± muscovite. Disse bands. Core angles 60° to 80°. e muscovite zones ones					!	·	
			ne breccia. Quartz and muscovite occur along late fractures aclasites. muscovite schist (recrystallized cataclasites). lasites with bands rich in biotite ± muscovite. Disseminate bands. Core angles 60° to 80°. muscovite zones nes otite siliceous cataclasites.				ļ'	'		
	Late fractures a	are filled with Mn oxides, mu	quartz + muscovite schist (recrystallized ca eous cataclasites with bands rich in biotite n biotite bands. Core angles 60 ⁰ to 80 ⁰ . zones schistose muscovite zones	als.		1		<u> </u>		

.

Property PLUT0		District		n, Y.T.	Hole No.	81-2	·····	, 				0	0	(785 m)	0 201)
	ly 1981	Location	NIS:	116C/8	Tests at	-	Hor. C		90 m		32	2000	- 50		
	ly 1981	Core Size		NQ	Corr. Dip	-		Comp. 11					<u>a</u>	2575'	1014
	W, 0+30SW				True Brg.		Logge		IAP		_	in l	Collar Dip		
Objective To loca	te and test source	e of W-Mo ge	ochemic	cal anomaly	and % Recov.	>99%	Date	22 July	1981		Claim	Brg.	ello 1	Elev.	ength
Footage	escription								Sample	Length	Analy		<u>Q</u>	<u> </u>	_
From To									No.		Мо	W	Cu	Pb	7
0 - 4'	Casing in silt.														ļ
4' - 17'	Fresh QFP with 10	to 25% euhe	dral qu	uartz phenoc	rysts (8 mm m	ax.) and 25 to 4	5% white to l	ouff	4'-10'	5'	7	20			2
	k-feldspar up to	o (1 cm max.) set	in a fine gr	ained white g	uartz + plagiocla	<u>ase + k-feld</u>	spar	10'-17.5	7'	5	25	3	9	2
	matrix. This li	ithology wil	l herea	after be ref	erred to as N	QFP (N for north	ern). Approx	imately	17.5'-22.5	5'	9	95	<1	13	1
	40 barren quartz	z veins betw	een 1 r	nm and 1 cm	in width are	present (core and	gles 45 ⁰ to 7	75 ⁰).						<u> </u>	,
	A few biotite ve	eins are pre	sent so	ometimes ass	ociated with	1 cm pyrite cube	s. Green flu	uorite							i
	is fairly abunda	ant especial	ly adja	acent to qua	rtz veins. M	n coated fracture	es are common	۱.							
17' - 22.5'	Pegmatite contain	ing 90% buff	k-fel	dspar and 10	% pale green	fluorite. Conta	ct at 22.5 is	š							
	gradational and	cut by grey	- bla	ck quartz ve	ins (c/a 90 ⁰	- 0 ⁰).							L		İ
22.5'- 68.5'	NQFP with 10 to 15	5% quartz ph	enocry	sts and 20 t	o 30% k-felds	par phenocrysts	set in a med	ium							
	grained matrix o	larker in co	lour t	nan section	4'-17'. Qu	artz + fluorite	veins are com	nmon;					L		
	Mn coated fract	ures; some f	racture	es contain s	oft pink clay	mineral; minor	pyrite assoc	iated					•		
	with fractures a	and veins.													
68.5'- 70.5'	K-feldspar + fluor	rite pegmati	te.												
70.5'- 139.5'	NQFP; fractures co	oated with M	n oxide	es ± muscovi	te and clay m	inerals. Biotite	e (<2% occurs	s in	70'-80'	10'	12	25	2	36	5
· · · · · · · · · · · · · · · · · · ·	clots and is usu	ually altere	d to cl	nlorite). M	inor pyrite i	s present (<0.5%). Quartz ve	ein							
·	intensity is muc	ch lower tha	n at to	op of hole (4-5 veins/10'). At 107' a un	directional s	solidi-							
·	fication texture	e indicates	that th	ne direction	of crystalli	zation was downwa	ards. Note (thin							İ
	(1 mm) veins of	quartz + br	own mia	ca; pyrite +	quartz + flu	orite veins at 1	11' and 121'	;							
	k-feldspar + qua		+ 1961												ł

Drill Hole I	1ecolu		Comince		'	1	1 1	'		1
Property PL	UTO District Dawson, Y.T.	Hole No. 81-2			'	'		'	11	ł
Commenced	Location	Tests at	Hor. Comp.			'	1	1		1
Completed	Core Size	Corr. Dip	Vert. Comp.			1	1 1	1 '		1
Co-ordinates		True Brg.	Logged by		· /	/	1 1	Dip	1 1	1_
Objective		% Recov.	Date			Claim	Brg.	Collar Dip	1.1	ength
						ō	1	8	Elev.	
Footage From To	Description			Sample No.	Length	Analy Mo		Cu	Pb	Z
139.5'- 146.5	5' Pegmatite with k-feldspar + quartz + fluorite ±	<pre>± phlogopite (?). Note large /</pre>	(1-2 cm) crystals of		,	,			()	\mathbf{I}
	euhedral grey quartz set in k-feldspar matrix			1	1					[
146.5'- 156'	NQFP with a few k-feldspar + quartz pegmatite 1			1	1	1				1
	veins, clay filled fractures and Mn oxide fra		***		1	1			1	
156' - 157.5			s 80°. Note presence	e	· · · · · · · · · · · · · · · · · · ·		[]			
	of pyrite + moly at 1 cm from contact at 157.			1	,	1	\square		\Box	
	fracture related and is probably associated w				,	1	\int			\int_{-}^{-}
157.5'- 176.5						T	1			Ē
	contains a few biotite rich zones (2-5%) less				† ''	1	1		\Box	Ē
	+ foliated pegmatite is present between 169'	and a second sec	· · · · · · · · · · · · · · · · · · ·	1	1				1	
	and up to 3 cm in diameter and occur in the p			1	f,	<u> </u>	[]			$\int_{-\infty}^{\infty}$
	veins are present.				<u> </u>		\Box		1	
176.5'- 179'	K-feldspar + fluorite + quartz + minor biotite	e pegmatite.				1	[
179' - 222'	NQFP with up to 50% k-feldspar phenocrysts and	and the second second second second second second second second second second second second second second second	y matrix.							
	Proportion of phenocrysts changes from one la								_ '	
	disseminations and stringers. Veins: 10 qua	And and the second seco							[]'	Ĺ
	pyrite vein.						\Box'		[]'	£
222' - 246.5	5' K-feldspar + quartz + fluorite pegmatite; subhe	iedral quartz crystals up to 9 /	cm in length.	230'-240'	' 10'	74	30	1	144	+2
	Contains patches with up to 50% fluorite cont						\Box			Ĺ
	of medium grained k-feldspar and fluorite are	e present locally. At contact	(246.5') a 2 cm				['		[]'	Ĺ
	dyke of QFP containing 5% quartz and 20% k-fe	the second s					['		['	Ĺ
	matrix appears to intrude both the pegmatite			1		1	1,		1,	ſ

Property PLU1	0 District Dawson, Y.T.	Hole No. 81-2								
Commenced	Location	Tests at	Hor. Comp.							
Completed	Core Size	Corr. Dip	Vert. Comp.							
Co-ordinates		True Brg.	Logged by					g		١.
Objective	,	% Recov.	Date			Claim	Brg.	Collar Dip	Elev.	4000
5	N			Sample	Length	0 Anal		10	Ξ	Ŀ
Footage From To	Description			No.	Longin	Mo	W	Cu	Pb	Ţ.
257' - 259.5'	K-feldspar ± fluorite ± biotite pegmatite with 4	mm vein of biotite + moly	+ powellite (20 ⁰ c/a).				L			ļ.
259.5'- 262.5'	Buff biotite granite. Biotite phenocrysts to 6 m	m				1	1			-
262.5'- 296.5'	K-feldspar + fluorite pegmatite, with a few 3 mm	biotite veins. Contact w	ith biotite granite is	·			<u> </u>	ļ		
	gradational.							<u> </u>	ļ]	1_
296.5'- 316'	NQFP: 20% quartz, 45% k-feldspar, 3% biotite phe	enocrysts in grey fine gra	ined matrix; 2 x 1 mm			ļ	<u> </u>	_	ļ	
	quartz veins; Mn stain on fractures; minor pyri	te along fractures.				ļ	<u> </u>			L
316' - 321'	Weakly porphyritic QFP containing granitic phases	and bands of k-feldspar	<u>t</u> quartz alteration				ļ	<u> </u>		L
	up to 1.5 cm in width.			<u> </u>		_	_	ļ	<u> </u>	L
321' - 324'	K-feldspar + fluorite pegmatite. Fluorite crysta	ils are up to 4 cm across.		ļ				1	ļ]	L
324' - 344'	NQFP containing chunks of buff k-feldspar + fluor	rite pegmatite: broken ro	ck (fault zone?)	340'-350'	10'	79	25	-	131	1
	between 325' and 327'.			350'-360'	10'	80	80	1	146	4
344' - 379.5'	Grey to white QFP with 5-10% quartz phenocrysts (to 6 mm) set in an equigr	anular to weakly		ļ	_		∔		Ļ
	feldspar porphyritic matrix. Note moly + fluor	ite + powellite associate	d with vuggy areas			_	_	<u> </u>		Ļ
	at 348', 354', 356' and 371'; note 3 quartz + p	oyrite veins (1 mm) and Mn	oxides coating			<u> </u>	ļ		 	Ļ
	late fractures.							ļ		ļ.,
379.5'- 389.5'	K-feldspar + fluorite + quartz pegmatite with abu	indant Mn stain along frac	tures.	380'-390'	10'	57	25	2	125	ļ
389.5'- 391.5'	Kaolinized friable NQFP: contact with fresh QFP	is sharp.			ļ	<u> </u>	_	_	 !	Ļ
391.5'- 392.5'	Fresh NQFP.		······					_	ļ!	
392.5'- 399.5'	K-feldspar + fluorite + quartz pegmatite. Note g	gradational contact betwee	en fresh QFP and			_				4-
	k-feldspar pegmatite.									1

Drill Hole F		on, Y.T	Cominco							
Property PLU Commenced	ITO District Dawso	on, Y.T. Hole No. 81-2 Tests at	Hor. Comp.							
Completed	Core Size	Corr. Dip	Vert. Comp.			-				
Co-ordinates		True Brg.	Logged by					ġ		
Objective		% Recov.	Date			Claim	Brg.	Collar Dip	Elev.	
Footage From To	Description			Sample No.	Length		ysis			1
403.5'- 450'	Mixed k-feldspar + fluorite + quart	tz ± biotite pegmatite and NQFP. Conta	acts are sometimes							
		Speck of moly at 420.5'. Quartz veir								
	common (ie. 1-2 per 1 ft. of core	e). K-feldspar veins also common. Som	metimes k-feldspar							
	rims quartz veins.									
						1				I
							1			I
					1					I
										Ī
							T			I
										Ī
				-		1-				1
				_			1			
			· · · · · · · · · · · · · · · · · · ·	-			1			
				-		-	1			1
					1	1				1
							1			t
						1	1			
				- 1			1	tt		1
						1	1			t
							+			t

Property PLUT	0	District	Dawson, Y.T.	Hole No. 81-3	••						(approx
Commenced 22 J	uly, 1981	Location	Middle QFP	Tests at	Hor. Comp.			8		006	
Completed 25 J	uly, 1981	Core Size	NQ	Corr. Dip	Vert. Comp.						2955'
Co-ordinates 10+8	5N, 1+75W			True Brg.	Logged by	IAP			. li	Collar Dip	
Objective To t	est the middle quar	tz-feldspar	porphyry for	% Recov. 98-100%	Date 25 Ju	ly 1981			Brg.	ollar	Elev.
	bdenum-tungsten min	eralization				Ta	lä	5 Inaly		<u>ŏ</u>	<u></u>
Footage From To	Description					Sample No.	Ironaa L			Çu	Pb
0 - 5'	Casing in overbur	den				10- 20		76	500		
5' - 170'	Middle granite po	rphyry (her	eafter MGP) conta	ins 2-10% smokey subhedral t	o euhedral quartz pheno	- 20- 30		34	300	11	198
	crysts up to 8	nm diameter	. The rest of th	e constituents (ie. the matr	ix) show hypidiomorphic	30- 40		03	480		
	granular textur	e with 35%	grey euhedral qua	rtz crystals up to 4 mm diam	neter and 30% white to	40- 50		43	550	8	127
	buff euhedral t	o subhedral	k-feldspar cryst	als up to 5 mm in diameter s	et in a white plagio-	50- 60		43	300	17	198
	clase matrix.	Biotite con	tent is less than	2%. The feldspars are gene	rally quite fresh,	60- 70		125	250	70	264
	but near the to	p of the ho	le between 5' and	30' they are kaolinized.		70-80	ļļ.	48	250	42	176
	Dark grey vuggy a	reas of qua	rtz + muscovite ±	weathered pyrite alteration	of the granite	80-90		110	1100	48	400
				e, pyrite, molybdenite, chalc		90-100	ļļ	61	300		
	sporadically as	sociated wi	th the quartz + m	uscovite alteration. Contac	ts of altered sections	100-110	ļļ		400		
				t shows footage of altered a		110-118		49	500	12	110
				resent other than quartz + m		118-128					
				8', (0 ⁰ ,10 ⁰), 86' (70 ⁰ , pyri	And a second second second second second second second second second second second second second second second	128-140	tt		250		
				-101'(20 ⁰ , pyrite + molybder		, 140-150			400		
				143'(70 ⁰), 149'(90 ⁰ , chalcor	oyrite + wolframite +	150-160			160	2	
			-170' (50 ⁰ , pyrit			160-170	<u> </u>	85	100	15	205
170' - 227'				o 8 mm). Maximum size of k-					i	 	
				dspar+plagioclase matrix. (
			and the second se	, 194'(80 ⁰), 220', 22.5'-223							
				feldspar + plagioclase + flu m) between 207°and 226°	orite vein cut by		<u>↓</u> ↓		 		

Property PLUTO	District Dawson, Y.T.	Hole No. 81-3	• ••						
Commenced	Location	Tests at	Hor. Comp.					1	
Completed	Core Size	Corr. Dip	Vert. Comp.						
Co-ordinates		True Brg.	Logged by					QİD	
Objective		% Recov.	Date			E			łev.
						õ		3	Elev.
Footage From To	Description			Sample No.	Length		lysis W	ppm Cu	PL
227' - 277'	MGP, but with increase in content of fresh	pyrite and molybdenite - thes	e minerals are dissem-	220-230		225	80	12	450
	inated rather than being associated with			230-240		185	<10	25	400
	252'-258', 267'-274' and quartz veins +	molybdenite at 243'(30 ⁰ , 1 cm)	, 261'(45 ⁰ , 3 mm),	240-250		260	<10	18	325
	262' (20 ⁰ , 6 mm), 263' (20 ⁰ , 2 mm), 265'	'(70 ⁰ , 2 mm). Most of the mol	ybdenite in this section	250-260		210	190	8	140
	appears disseminated, but the mineraliza			260-270		260	<10	32	270
	veins.			270-280		85	105 q	40	215
277' - 281'	Dark grey quartz + muscovite ± pyrite veir	n c/a 90 ⁰ . Wolframite, molybde	nite and orange brown	280-290		54	50	28	52
	clay minerals are also present.			290-300		50	50	21	11
281' - 285'	MGP with disseminated molybdenite, minor o	clay alteration and pyrite vein	S	300-310		135	32	14	21
285' - 354'	Breccia with angular fragments of quartz	± biotite ± muscovite cataclasi	te up to 12 cm in	310-320		115	90	32	20
	diameter. Other fragments of minor impo	ortance include pale to dark gr	een hornblende +	320-330		305	20	32	185
	diopside cataclasites, pink garnet skar	rn, biotite + actinolite + quar	tz schist. The					ļ	
	interstitial material consists of QFP wi	ith trace molybdenite near the	contact and quartz						
	± fluorite ± beryl ± molybdenite ± biot	ite ± pyrite in the main part o	f the breccia.					ļ	
	Note (1) well developed beryl crystals ass	sociated with quartz filling in	terstices at 287'.					ļ	
	(2) molybdenite at 292', 297', 315',	316.5', 320'-322', 326 (mainly	disseminated in					L	
	interstices).				ļ		<u> </u> _'		_
	(3) pyrite + muscovite vein at 317'.							ļ	
	(4) quartz + molybdenite vein $(30^{\circ}, 4)$	1 mm) at 304.5.			 			ļ	_
	(5) at 340', QFP fragment is present	in breccia.							ļ

Property PLUT	0 District Dawson, Y	1.T. Hole No. 81-3							
Commenced	. Location	Tests at	Hor. Comp.						
Completed	Core Size	Corr. Dip	Vert. Comp.						
Co-ordinates		True Brg.	Logged by					ğ	
Objective		% Recov.	Date		!	Claim	Brg.	Collar	Elev.
				<u> </u>	r	5 1		<u>8</u>	ш
Foolage From To	Description		Sar No.			Analy Mo	/SIS W	Cu	Pb
354' - 391'	Breccia similar to above: note molybdeni	nite + quartz veins at $354'$ (30° ,	4 mm), 359', 382.5' 38	80-390			<10		1 1
	(75 ⁰ , 9 cm); disseminated molybdenite a			90-400	1 T	115		28	1
	sec. biotite in both fragments and inte			00-410		320	10	45	28
391' - 427'	Breccia similar to above, but with soft g		4', QFP fragments at						
	397'; Molybdenite (in interstices) at								
	+ wolframite veins at 406.5' (90 ⁰ , 3 cr	.m) and 407.5' (40 ⁰ , 1 cm); note	interstitial beryl						
	+ muscovite + soft white clay mineral a	at 415.5'. QFP veinlets at 424,	426`. 44	40-450		345	<10	6	28
427' - 437'	MGP containing xenoliths of siliceous ca	ataclasite. Note fine grained di	sseminated molybdenite 45	50-460		135	20	36	24
	in MGP. Quartz + pyrite + molybdenite			60-470		140	40	32	74
437' - 450'	Breccia mainly composed of siliceous cata	aclasite. Quartz + molybdenite	+ pyrite at 446' (90 ⁰); 47	70-480		260	32	24	42
	Molybdenite disseminated in MGP between			80-490		140	90	16	80
450' - 455.5'	MGP with 5% biotite ± chlorite - dissemin	nated molybdenite and xenolithic	c. 49	90-500		195	40	7	125
455.5'- 459'	Quartz + biotite + actinolite + pyrite ca			00-510		64	24	4	26
459' ~ 465'	MGP with quartz + pyrite + molybdenite ve	/eins at 461' (8 cm, 90 ⁰), 463' ('	8 cm, 90 ⁰). 51	10-520		82	10	4	27
465' - 567'	MGP with 2% biotite. Contains numerous	molybdenite bearing veins and di	sseminations usually close 52	20-530		125	70	5	38
	to veins: quartz + pyrite + sphalerite	2 + molybdenite + k-feldspar rim	(465', 60 ⁰ , 2 cm); 53	30-540		79	32	24	59
	quartz + biotite + pyrite (465.5', 20 ⁰ ,	, 2 mm); biotite + molybdenite + /	k-feldspar (470', 80 ⁰ , 54	40-550		245	40	22	36
	6 mm); quartz + biotite + molybdenite	(471', 50 ⁰ , 3 mm); quartz + biot	ite ± molybdenite + 55	50-560		115	40	8	58
	pyrite + k-feldspar (472.5', 50 ⁰ , 3 cm	<pre>a); quartz + pyrite + molybdenite</pre>	(473-475', 70 ⁰ , 1 mm -						
	3 cm, 9 veins in all), quartz + pyrite	<pre>+ molybdenite + biotite (478',</pre>	60 ⁰ , 2 cm). From 478'						
1	to 501' there are molybdenite occurrence	ces at least every foot. Between	496' and 500', 1-2 mm					- 1	Γ

Property PLUTO	District Dawson, Y.T	. Hole No. 81-3							
Commenced	Location	Tests at	Hor. Comp.						Í
Completed	Core Size	Corr. Dip	Vert. Comp.			1			
Co-ordinates		True Brg.	Logged by			ļ		Dip	iev.
Objective		% Recov.	Date			Claim	Brg.	Collar	Elev.
				Sample	Length	0 Anal		Ŏ	μ <u>μ</u>
Footage Descriptio	<u>, </u>			No.	Longui		<u> </u>		
vein	ns have gradational contact with grani	tes and others have sharp conta	acts. Pyrite +	ļ			ļ		
chal	copyrite + quartz ± muscovite vein at	497'.					ļ	ļ	
	501'-520' - 51 assorted veins cont			ļ					ļ
	k-feldspar + quartz +	muscovite + pyrite, quartz + sp	phalerite + molybdenite			ļ		ļ	
		ybdenite fairly abundant.							ļ
		vein at 524', well developed mo			_				
		ant as in 501' to 520'. (28 ve	eins total mineralized				-		
	and unmineralized).	0 0 0					<u> </u>	ļ	
		$45^{\circ}, 80^{\circ}, 80^{\circ}, 80^{\circ}, 80^{\circ}), quartz + k$	and a second second second second second second second second second second second second second second second						
		rite + sphalerite (2 mm, 549.5)); sphalerite + pyrite				 		
1 h	(543'), 44 veins.		-0.						
		te + k-feldspar rim (556.5', 80			+				<u> </u>
		80 ⁰); Molybdenite + k-feldspar	+ fluorite (560'):					 	<u> </u>
	13 veins with 6 minera	112ed.							╞──
									ļ
				+					
							+		
······			81 W. 97 (1979)		_		+	1	
								ļ	

Property PLL Commenced 26 J		Dawson, Y.T. Between middle ar porphyries.	Hole No. nd main Tests at	81-4	Hor. Comp				cical Hol		(approx.)
	1y 1981 Core S	ize NQ	Corr. Dip	Vertical Hole	Vert. Comp			30	Verti		2925'
Co-ordinates 9+70			True Brg.		Logged by	IAP			. i	ā	~
Objective To test	molybdenum/tungsten geochen	ical anomaly	% Recov.	>98%	Date 29 July	1981		Claim	Brg.	Collar Dip	lev.
Footage From To	Description					Sample No.	Length	O Analy	1		<u>. </u>
0' - 22'	Casing in overburden and t	alus.									
22' - 27'	Broken weathered cataclasi	te.									
27' - 37'	Streaky siliceous cataclas	ite with brown biot	tite rich bands,	green actinolite	<u>t</u> chlorite bands	<u></u>					
	and grey to white quartz	rich bands. Brown	n stained oxidize	d areas occur al	ong fractures or						
	parallel to the foliation	n. Disseminated py	rite is common	n some bands (2-	3%). Traces of				 		
	molybdenite in quartzite	adjacent to thin d	quartz-muscovite	veins (QM).							
37' - 40'	White quartz vein with Mn	stained QMP vein, 8	3 cm wide along o	contact at 37'.	Pyrite in QMP vein						
	is oxidized.								 		
40' - 132'	Siliceous cataclasite simi		vith brown stain	ng along QM vein	s. Trace MoS ₂						
	associated with quartz y	ein at 57'.			······································						
	QM ± limonite + Mn stained	veins at 61.5' (90	$(0^{\circ}), 81.5' (75^{\circ})$	88.5' (90 ⁰), 12	3 (80 ⁰ , 4 cm),						
	126' (80 ⁰ , 6 cm). Most	veins are parallel	to the foliation	i (core angles 75	⁰ to 90 ⁰). Note						
	bluish-white soft clay m	ineral along some	fractures. Trace	e molybdenite ass	ociated with pyrite						
	vein at 90'. Trace moly	bdenite associated	with quartz vei	at 104'. Quart	z + wolframite +			ļ			
	<pre>muscovite + limonite vei</pre>	n at 61.5' (90 ⁰).						1	 		
132' - 142'	Interfoliated quartz + bio										
	actinolite <u>±</u> chlorite + pyrite. QM vein at 141'		taclasite conta	ning pyrrhotite	± pyrite ± chalco-						
142' - 156'	Actinolite + biotite + chl		mito cataclasite	· ouartz + musco	vite + molybdenite +						

Property PLUT0	District Dawson, Y.T.	Hole No. 81-4	◆ •						
Commenced	Location	Tests at	Hor. Comp.					1	
Completed	Core Size	Corr. Dip	Vert, Comp.			1			
Co-ordinates		True Brg.	Logged by			1		ġ	
Objective		% Recov.	Date			Ē	Brg.	Collar Dip	1
						Ciaim	1	8	ш Ш
Foolage Description				Sample No.	Length	Ana	lysis	T	· [· · · ·
	biotite + chlorite cataclasite: buff	weathering oxidized zones;	1 cm granitic vein						
	uts across foliation.								1
	e + biotite + chlorite + quartz ± pyri	rhotite cataclasite (70 ⁰ co	re angle): contains a fe	2W	-	1		1	
	utting partly oxidized pyrite veins (-		1			
	rey and white to black siliceous cata		25 ⁰ , 1 cm); quartz +						
biotite	+ molybdenite vein at 170.5' (45 ⁰ , 6	mm).							
	tite + actinolite + chlorite + quartz		eins containing MoS ₂						
	z (60 ⁰ , 2 mm); at 178.5', QMP vein (1								
	90 ⁰) - cuts across foliation. From 1			<u> </u>		<u> </u>			<u> </u>
± molyb	denite with wolframite growing adjace	nt to the contacts.							
190' - 211' Quartz +	biotite cataclasite with QMP vein con	taining limonite constituti	ng half the core						
(c/a 0 ⁰	to 10 ⁰), molybdenite + quartz vein a	t 195' (40 ⁰ , 5 mm).							
211' - 237.5' Green mas	sive actinolite rock containing minor	pyrite. Note biotite rich	well foliated zone				_	1	
from 21	3' to 214' and a weakly foliated zone	containing white irregular	veins in a grey to	_					
green a	mphibole matrix also containing pyrrh	otite ± magnetite. Note 1	cm quartz + wolframite						
vein at	234'.								
237.5' - 243.5' Biotite +	actinolite + quartz + pyrite catacla	site. Pyrite veins cut acr	oss foliation and also			ļ			
paralle	1 foliation.		1 (11) (Mar) - 1 (11) (11) (11) (11) (11) (11) (11)						<u> </u>
243.5' - 246.5' 6" sectio	n of buff QM <u>+</u> molybdenite at 243.5'	then into white quartz with	contorted bands of				_		
biotite	+ tremolite cataclasite.					1			

Property PLUTO District Dawson, Y.T. Hole No. 81-4 Commenced Location Tests at Completed Core Size Corr. Dip Co-ordinates True Brg. Objective % Recov. Foolage Description From To 246.5' - 261' Quartz + biotite + actinolite cataclasite: quartz + molybdenite + py 258' (90°, 2 cm). 261' - 271' Actinolite + biotite + quartz ± pyrrhotite ± pyrite ± chalcopyrite gr pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' 271' - 308' Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' 90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone. Veins: 278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°, 2 cm); 291', quartz + molybdenite (303', quartz + molybdenite (90°, 2 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'	Hor. Comp. Vert. Comp. Logged by Date Sample Lei	E			
Commenced Location Tests at Completed Core Size Corr. Dip Co-ordinates True Brg. Objective % Recov. Footage Description From To 246.5' - 261' Quartz + biotite + actinolite cataclasite: guartz + molybdenite + py 258' (90°, 2 cm). 261' - 271' Actinolite + biotite + quartz ± pyrrhotite ± pyrite ± chalcopyrite gr pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30 271' - 308' Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone. Veins: 278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332' Actinolite ± biotite ± chlorite + diopside(?) + quartz ± pyrhotite ± brecclated between 320' and 325'. Note increase in quartz + biotite	Vert. Comp. Logged by Date				
Co-ordinates True Brg. Objective % Recov. Footage Description From To 246.5' - 261' Quartz + biotite + actinolite cataclasite: quartz + molybdenite + py 258' (90°, 2 cm). 261' - 271' Actinolite + biotite + quartz ± pyrrhotite ± pyrite ± chalcopyrite gr pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30°) 271' - 308' Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone. Veins: 278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332' Actinolite ± biotite ± chlorite + diopside(?) + quartz ± pyrrhotite ± brecclated between 320' and 325'. Note increase in quartz + biotite	Logged by Date				1
Objective % Recov. Footage Description From Te 246.5' - 261' Quartz + biotite + actinolite cataclasite: quartz + molybdenite + py 258' (90°, 2 cm). 261' - 271' Actinolite + biotite + quartz ± pyrrhotite ± pyrite ± chalcopyrite gr pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30 271' - 308' Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone. Veins: 278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332' Actinolite ± biotite ± chlorite + diopside(?) + quartz ± pyrrhotite ± brecclated between 320' and 325'. Note increase in quartz + biotite	Date	E			
Footage Description From To 246.5' - 261' Quartz + biotite + actinolite cataclasite: quartz + molybdenite + py 258' (90°, 2 cm). 261' - 271' Actinolite + biotite + quartz ± pyrrhotite ± pyrite ± chalcopyrite gr pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30°) 271' - 308' Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone. Veins: 278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 308' - 332' Actinolite ± biotite ± chlorite + diopside(?) + quartz ± pyrhotite ± brecclated between 320' and 325'. Note increase in quartz + biotite ±	······································	ε	I	ġ	
FromTo246.5' - 261'Quartz + biotite + actinolite cataclasite: quartz + molybdenite + py 258' (90°, 2 cm).261' - 271'Actinolite + biotite + quartz ± pyrrhotite ± pyrite ± chalcopyrite gr pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30271' - 308'Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone.Veins:278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz ± pyrrhotite ± brecclated between 320' and 325'. Note increase in quartz + biotite	Sample Lei	i 着	T Brg.	Coliar	Elev.
FromTo246.5' - 261'Quartz + biotite + actinolite cataclasite: quartz + molybdenite + py 258' (90°, 2 cm).261' - 271'Actinolite + biotite + quartz ± pyrrhotite ± pyrite ± chalcopyrite gr pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30271' - 308'Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone.Veins:278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz ± pyrrhotite ± brecclated between 320' and 325'. Note increase in quartz + biotite	Sample Le				Ele
258' (90°, 2 cm).261' - 271'Actinolite + biotite + quartz ± pyrhotite ± pyrite ± chalcopyrite grpyrite is associated with quartz rich bands and boudins; max. 5% pyzones:Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30271' - 308'Streaky quartz + biotite cataclasite; biotite locally chloritized atchalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondarythe margins of vein adjacent to molybdenite rich zone.Veins:278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM +289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300',303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite ± biotite ± chlorite + diopside(?) + quartz ± pyrrhotite ±brecciated between 320' and 325'. Note increase in quartz + biotit	No.	ngth Anal Mo	alysis W		ı Pb
258' (90°, 2 cm).261' - 271'Actinolite + biotite + quartz ± pyrhotite ± pyrite ± chalcopyrite grpyrite is associated with quartz rich bands and boudins; max. 5% pyzones:Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30271' - 308'Streaky quartz + biotite cataclasite; biotite locally chloritized atchalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondarythe margins of vein adjacent to molybdenite rich zone.Veins:278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM +289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300',303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite ± biotite ± chlorite + diopside(?) + quartz ± pyrrhotite ±brecciated between 320' and 325'. Note increase in quartz + biotit	ite at 255' (90 ⁰ , 8 mm) and 270-280		5 150		5 47
261' - 271'Actinolite + biotite + quartz ± pyrrhotite ± pyrite ± chalcopyrite gr pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30271' - 308'Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone.Veins:278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly 292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 			0 10		2 57
pyrite is associated with quartz rich bands and boudins; max. 5% py zones: Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30271' - 308'Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone.Veins:278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly 292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrrhotite + brecciated between 320' and 325'. Note increase in quartz + biotite	en to brown cataclasite; 290-300	10 145	5 <10	J 42	2 14
zones:Molybdenite + quartz veins at 267' (80°, 3 mm) and 271' (30271' - 308'Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone.Veins:278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly 292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrhotite ± brecclated between 320' and 325'. Note increase in quartz + biotite		10 325	5 30	40 () 6
271' - 308'Streaky quartz + biotite cataclasite; biotite locally chloritized at chalcopyrite + sphalerite vein at 272' (90°, 4 cm); note secondary the margins of vein adjacent to molybdenite rich zone.Veins: 278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM + 289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly 292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300', 303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrrhotite ± brecclated between 320' and 325'. Note increase in quartz + biotite	, 3 mm). 310-320	10 84	4 40	0 56	5 6
the margins of vein adjacent to molybdenite rich zone.Veins: 278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM +289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300',303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrrhotite ±brecclated between 320' and 325'. Note increase in quartz + biotite		10 400	0 50	0 76	5 8
Veins:278', QM + wolframite + sphalerite (30°, 1 cm); 281', QM +289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300',303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrrhotite +brecclated between 320' and 325'. Note increase in quartz + biotite	iotite recrystallized at 330-341.5	10 205	5 50) 64	9
289', quartz + molybdenite (90°, 2 cm); 291', quartz + moly292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300',303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrrhotite +brecciated between 320' and 325'. Note increase in quartz + biotit	341.5-345.5	10 255	<u>s <10</u>	0 215	, 1170
292', QM + molybdenite (90°); 296', QMP (20°, 1 cm); 300',303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrrhotite +brecciated between 320' and 325'. Note increase in quartz + biotit	olybdenite (1 cm, 0 ⁰); 345.5-350	10 210	<u>ר ר</u> נ	0 36	, 46
303', quartz + molybdenite (2 mm); 308', QM + molybdenite (308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrrhotite +brecciated between 320' and 325'. Note increase in quartz + biotit		10 290) <10	0 64	14
308' - 332'Actinolite + biotite + chlorite + diopside(?) + quartz + pyrrhotite + brecciated between 320' and 325'. Note increase in quartz + biotit	MP + molybdenite;				
brecciated between 320' and 325'. Note increase in quartz + biotit	θ ⁰ , 2 cm).				
	pyrite cataclasite:				
Veins: 310', quartz + phloqopite + molybdenite (90 ⁰ , 2 cm); 320'-3					
	ter an an an an an an an an an an an an an				
+ molybdenite veins (70 ⁰ to 90 ⁰ , 2 mm to 7 cm); 327', quart	+ phlogopite vein zoned				
to muscovite + molybdenite.					_
332' - 341.5' Quartz + biotite + pyrite cataclasite with pyrite and pyrrhotite clo	s: quartz + molybdenite				
veins at 333', 333.5' (90 ⁰ , 2 cm), 338.5' (30 ⁰ , 3 mm).					
341.5' - 345.5' Granitic "sill" with fine bands of QMP + molybdenite. The bands near					<u> </u>

Prope	rty P	LUTO	District	Dawson, Y.T.	Hole No. 81-4	••							
Comr	nenced		Location		Tests at	Hor. Comp.							
Comp	leted		Core Size		Corr. Dip	Vert. Comp.				} '			ĺ
Co-or	dinates				True Brg.	Logged by			1		g		
Objec	tive				% Recov.	Date			Claim	T Brg.	Collar	Elev.	4000
Ecolor		Description				· · · · · · · · · · · · · · · · · · ·	Sample	Length	Ö Anal		ŏ	Ξ I	E
Foolag From	To	Description					No.		Mo	W		1	Ī
345	5' - 372'					een 356' and 358' (c/a 90 ⁰)	. 360-370	ļ		<10	1	28	
); 356.5', quartz + mol		370-380	10		<10		7	ļ.
					n); 368', quartz + moly		380-390	10	155			1	
				In the second second second second second second second second second second second second second second second	mm); 371', quartz + mo	lybdenite + biotite	390-400		34	4	70	↓ <u>-</u>	1
		(ph	ogopite?) (90 ⁰ ,	1 cm).			400-410	10		<10		10	-
372	- 476'	The streaky q	uartz + biotite c	ataclasite grade	s into actinolite + bio	tite + quartz + pyrite +	410-420		54		52	8	
					rnets (?) at 374'.		420-430	1		-	36		Ļ
		Veins: Mol	/bdenum + quartz	at 374' (70 ⁰ , 5 i	nm), <u>380' (80⁰, 1 cm),</u>	420' (80 ⁰ , 3 mm), 425' (90 ⁰		1					Ļ
		1 0					440-450				68	1	Ļ
), 436' molybdenite + q	uartz + biotite at 392';	450-460	10			44		Ľ
			' (90 ⁰ , 1 cm); 40				460-470	10	100	<10	52	13	┞
		QMP	+ molybdenite +	biotite at 406'	(90 ⁰ , 2 cm), pyrrhotite	+ muscovite at 422' (90 ⁰ ,		ļ	- 			 	-
		3 m						ļ			4		Ļ
					ovite ± fluorite at 427	' (90 ⁰ , 6 cm).					 		ŀ
			/bdenite + quartz	and a second sec				ļ					.
			<u>/bdenite + quartz</u>]	-
			<u>ybdenite + quartz</u>									 	╞
					luorite + sphalerite at					·			-
					biotite k-feldspar rim			<u> </u>		 			ŀ
		Qua	rtz + molybdenite	+ fluorite + ka	olinite + wolframite +	pyrite at 453' (90 ⁰ , 6 cm)	•						1

Property PLUTO	District Dawson, Y.J	. Hole No. 81-4							
Commenced	Location	Tests at	Hor, Comp.						
Completed	Core Size	Corr. Dip	Vert. Comp.						
Co-ordinates		True Brg.	Logged by					Dip	
Objective		% Recov.	Date			ε	T Brg.	lar I	1.
0.0100.000								Collar	Elev.
Footage From To	Description			Sample No.	Length	Anal Mo		Cu	Pb
372' - 476'	Veins: Quartz + molybdenite + muscovit	te at 460' (80 ⁰ , 4 cm).		470-480		120	<10	48	4
(cont'd.)	Quartz + pyrite + molybdenite a			480-490		82	<10	130	18
	Quartz + molybdenite + biotite			490-500		125	90	76	120
	Quartz + molybdenite + pyrite a			500-510		390	40	40	10
476' - 494'	Biotite + quartz cataclasite; gradational		te cataclasite.	510-520		470	50	40	1
	Veins: 476': QMP + molybdenite (10°)			520-530		215	300	36	1
	478': Quartz + pyrrhotite (90 ⁰		ovite + molybdenite (1 cm)	530-540		50	300	34	
	481.4': pyritic breccia zone (540-550		215	<10	40	!
			2	550-560		110	<10	30	1
	490.7': Quartz + muscovite + 1		-	560-570		76	<10	52	1
	492': Quartz + muscovite + mol	lybdenite (90 ⁰).		570-580		66	<10	58	
	493'-494': Quartz + molybdenit	te (20 ⁰ , 3 mm).							ĺ
494' - 496.5'	Grey-White quartz + pyrite + muscovite ro	ock containing soft black unknow	wn mineralization.						
496.5' - 566'	Quartz ± biotite cataclasite.							ļ	
	Veins: 497': Molybdenite + QMP.								
	499': Fluorite + quartz + k-fe								
	501': Quartz + phlogopite + py	vrite + molybdenite (85 ⁰ , 3 cm)							L
	505'-506': Wolframite + quartz	z + phlogopite (0 ⁰ , 1-2 cm).							
	505'-506.5': Molybdenite + qua							ļ	
	506'-515.5': 5 x quartz + moly	ybdenite (0 ⁰ , each vein between	1 and 2 mm).						Ĺ

211-9437

Property PLUTO	District Dawson, Y.T.	Hole No. 81-4	↔						
Commenced	Location	Tests at	Hor. Comp.						
Completed	Core Size	Corr. Dip	Vert. Comp.]			
Co-ordinates		True Brg.	Logged by					Collar Dip	
Objective		% Recov.	Date			Claim	Brg.	llar	×.
			,	-1	1	Ö Ana	F	ပိ	ū
Footage Descript From To	ion			Sample No.	Length	Ana	lysis	1	T
496.5' - 566'	516.7'-517.5': Quartz vein with 1 c	m of molybdenite + muscovite	+ sphalerite + quartz						
(cont'd.)	525': Quartz + muscovite + wolframi			1					
	528'-529': Quartz + molybdenite + w	olframite (20 ⁰ , 2 veins each	3 mm).						
	534'-535': Quartz + molybdenite (2								
	536.5'-537': Quartz + molybdenite +	wolframite + muscovite (15 ⁰ ,	4 mm).						
	537.5': Quartz + pyrite + k-feldspa	r + molybdenite (90 ⁰ , 1 cm).							ļ
	538': Sill of biotite granite (90 ⁰ ,	5 cm).				<u> </u>			
	541': Quartz + molybdenite + wolfra	mite (90 ⁰ , 3 mm).		1	_	_			
	542': Quartz vein (2 cm) cored with		5 mm).						
	542'-543': Molybdenite in thin (2 m	m) white quartz veins (25 ⁰).				1			<u> </u>
	545': Granite sill (90 ⁰ , 6 cm).						ļ		
	546'-547': Quartz + molybdenite + p	pyrite (10 ⁰ , 8 mm) - ex. vein	note how the						
	molybdenite crystals gro	w in from edge of vein.						ļ	
	<u> </u>							ļ	
	550': Molybdenite + quartz (90 ⁰ , 3							ļ	
	550'-551': Quartz + biotite catacla		by white quartz.			-	<u> </u>		
	551': Molybenite + quartz + pyrite					- <u> </u>		<u> </u>	
	552.5'-553': Granitic veins in cata			-			.		
	556'-557': Trace molybdenite + quar								
	559.5': Molybdenite + quartz (90 ⁰ ,	2 cm).					_	ļ	

Т

Colour Plot

111

Scale

Deserves of the			Hala No. 01 A	◆ • •							
Property PLUT(Hole No. 81-4	Har Camp							
Commenced	Locati		Tests at						1 1		
Completed	Core S	128	Corr. Dip						. <u>Q</u> .		
Co-ordinates	, na an an an an an an an an an an an an		True Brg.				E	o			£
Objective			% Recov.	Date			Clair	à	Ĩð	Vela	-ength
ootage rom To	Description				Sample No.	Length		ysis	<u>. </u>	····	
496.5' - 566'	566': Quartz +	biotite + trace molybo	lenite.	······································	580-590			1 1			
(cont'd.)						·					
566' - 579'	Actinolite + biotite + qua	rtz cataclasite with p	oyrite and pyrrhotite clo	ts.	600-610		1100	500	200	520	365
	Veins: 569': Granitic	vein (1.5 cm).			610-620		34	40	24	31	110
	569'-572': Moly	bdenite + quartz vein	$(10^{\circ}, 3 \text{ mm})$ - cut and of	fset by chlorite + quartz	620-630		38	40	36	60	55
	veir	(45 ⁰ , 2 mm).			630-640		32	60	16	98	90
579' - 580.5	Quartz + biotite cataclasi	te.									
580.5' - 637'	Middle granite porphyry (M	GP). Note fine graine	d contact phase extendin	g to 583' where granite							
	becomes medium grained a	nd equigranular. The	granite is composed of e	uhedral to subhedral					!	i l	
	quartz (30%, up to 3 mm)	, euhedral to subhedra	1 k-feldspar (40%, 6 mm)	set in a plagioclase							
			coarse grained quartz ph	enocrysts up to 8 mm							
	diameter. The contact c	/a at 580.5' is 50 ⁰ .									
	Alteration: The granite	possesses sections of	friable intensely kaoli	nized rock from 583' to						 	
				to 622', 630' to 637'.						 	
		o 587' the c/a of alte	eration zones is 30° .			ļ			ļ!	┝───┠	
	Veins: 581': Quartz +						 	 	<u> </u>	 	
		ral quartz + molybdeni					ļ	 		<u> </u>	
		Four quartz veins (70 ⁰	', 4 mm).	·							
	596'-599': Four			Sample No. Length Mo Analysis Mo W Cu Pb 580-590 60 <10							
		and the second second management is seen in the second second second second second second second second second	ed on well mineralized q	uartz + molybdenite							
		scovite vein (5 ⁰).							<u> </u>		
	618': QM (45 ⁰).				<u> </u>]		

Drill Hole F		.T. Hole No. 81.4	Cominco						Sheet 6.25.0
ribberty	UTO District Dawson, Y	11016 140.	· · · · · · · · · · · · · · · · · · ·						She
Commenced	Location	Tests at	Hor. Comp.						
Completed	Core Size	Corr. Dip	Vert. Comp.				a		
Co-ordinates		True Brg.	Logged by				ā		E N
Objective		% Recov.	Date		Claim	T Brg.	Collar Dip	Liev.	Lengtn Hole No.
Footage From To	Description		San No.	nple Length	Anal	ysis			
580.5' - 637'	622': Quartz + molybdenite	(60 ⁰ , 4 mm).							
(cont'd.)	624': QM (60 ⁰ , 1 cm).								
	626': QM (80 ⁰ , 1 cm).								
	627': Quartz + biotite + mo	lybdenite (10 ⁰ , 2 mm).							
						1			
					1				
					<u> </u>				
					1				
					1				
					<u> </u>				
					1				
					<u> </u>				
`					ļ	ļ			
					ļ				
						ļ			
					L	ļ			
						<u> </u>			

Drill Hole Record

Colour Plot & Dips

Scale

ů....

Drill Hole F	lecord				Cominco					90 ⁰	·.	Ê	at 1 of
Property PLUT	0	District Dawson	Hole No.	81-5	• •					6	(approx.)	(244.3 m)	Sher
Commenced 29	July 1981	Location Margin of main QFP	Tests at		Hor. Comp.			<u> </u>			(ap	244	
Completed 4 Au	ug. 1981	Core Size NQ	Corr. Dip	Vertical	Vert. Comp.			58			1.0	-	
	65N, 0+08W		True Brg.		Logged by I.A		son	4		Collar Dip	Elev. 2525	Length 801.5'	ġΫ́
Objective To tes	st contact zone of	main porphyry for Mo-W mineraliza-	% Recov.	> 98%	Date 5 Augus	t 1981		Claim	T Brg.	ollar	ev.	angt Bragt	۹ ۳
tion	I					Sample	Length	O Analy		0 DDM	<u> </u>	<u> </u>	<u>r</u>
Footage From To	Description					No.	Lengen			Cu	Pb		
0' - 20'	Casing in talus a	nd broken rock.				30-40		70	10	43		145	*
20' - 47'	Quartz + biotite	<u>t</u> chlorite cataclasite with sectior	ns of broken	n rock (core ang	les 70 ⁰ to 90 ⁰)	40-50	_ 	533	20	43	<u>↓</u>	126	
	Veins: 21.5':	Granitic vein (80 ⁰ , 2 cm); 22':	QM + trace	• MoS ₂ (30 ⁰ , 5 mm	n)	50-60			<10	40	<u>↓</u>	120	
	28':	QMP (30 ⁰ , 4 mm); 29': QMP + tra	ace MoS ₂ (70) ⁰ , 8 [¯] mm).		60-70	ļ	121	90	57	12		
	30':	QM (80 ⁰ , 6 mm) - highly oxidized	<u>d veins; 32'</u>	: Quartz + trac	<u>ce MoS₂ (90⁰, 2 cm).</u>	70-80		237	<10	5	11	99	
	36':	QM + trace MoS ₂ (45 ⁰ , 1 cm); 37.	.5': Quartz	: + Mn stain (80 ⁰	² , 2 cm).								
	37'-42'	: 4 x 2 mm whole quartz veins											
	42':	Quartz + MoS ₂ (20 ⁰ , 2 cm); 43':	QM + ex. m	nolybdenite (45 ⁰)			 					
	43'-44'	: Quartz + trace MoS ₂ (90 ⁰ , 2 mm),	<u>QMP + trac</u>	<u>e Mos₂ (90°, 1 c</u>	<u>cm).</u>			<u></u>					
	47':	Thin felsite dykes up to 3 cm.											
47' - 49.7	Actinolite + biot	ite + chlorite cataclasite.											
	49.7':	6 cm QFP and quartz + MOS ₂ vein.	•										
49.7' - 74'	Quartz + biotite					·		+		$\mid - \mid$			
	49.7'-5	1': White quartz + MoS ₂ veins - th	hese veins o	ut quartz + phlo	ogopite (0°, 1 cm)					$\left - \right $			
		veins which in turn cut quartz	z veins whic	ch parallel folia	ation.		+				┨───┤		
	52':	QMP (80 ⁰ , 3 cm);											
	54 ' - 55 '		 note oper 	<u>n space fracture</u>	filled with								
		QMP.											
	55':	$\frac{Quartz + MoS_2}{2} (90^0);$											
	62':	$QM + trace MoS_2 (5^\circ, 5 mm)$.				+							
	66'-67'						+				<u>├</u>		
	68':	QMP + wolframite (90 ⁰ , 8 cm).				<u> </u>	1		L	L]	L]		

	0								i İ	
Property PLUT	U	District Dawson	Hole No. 81-5	Hor Care						
Commenced		Location Core Size	Tests at Corr. Dip	Hor. Comp. Vert. Comp.					i	
Completed		Core Size	True Brg.	Logged by			i		<u>e</u>	
Co-ordinates			% Recov.	Date			E	ġ.	ar	Elev.
Objective				Date			Ctaim	T Brg.		
Footage	Description				Sample No.	Length	Analy	sis	ppm Cu	
From To	(0.5)	Muscovite + pyrite + f	$(15^0 - 0)$		80-90			w 40		РЬ 46
49.7' - 74'	68.5': 70':		, 2 mm) cuts biotite vein (2		90-100			20	f	45
	70*:		, 2 mm) cuts protite vern (2 orphyry cut by pyrite and fe		100-110			40	t t	78
74' - 146'			quartz phenocrysts set in me		110-120			50		152
/4 - 140		the second s	(30%, 2 mm max.), 38% k-fel		120-130		135			112
			f disseminated MoS ₂ at 75' i				292	1		110
			Quartz crystals tend to for							
	Veins: $MoS_2 + q$	uartz at 75.5' (90 ⁰ , 2 mm)	, 80.8' (80 ⁰ , 2mm), 84' (20 ⁰). QMP at 79' (15 ⁰),						
	82' (5 ⁰)	, 85' (20 ⁰ , 80 ⁰), 86 (80 ⁰)	- all 1-3 cms.							
	86':	2 QMP veins (80 ⁰ , 2 cm	, 4 cm).							
	88.7':	Quartz + MoS_2 (90 ⁰).							<u> </u>	
	93.5':		fluorite with disseminated M	oS ₂ along contact with			 			⊢_ ↓
		MGP (90 ⁰).							ļ!	
	94.5':	$QP + MoS_2 (25^0, 3 mm).$		······································					ļ	
	97.5':	Quartz + MoS ₂ (2 nm, 8	<u>o</u> ^o).	· · · · · · · · · · · · · · · · · · ·						i
	99.5';								<u> </u>	├
	102':						 		ļ!	
	103':	Disseminated MoS ₂ in "	layered" zone in intrusive.				[
		$(0^{\circ} - 5 \text{ mm})$.							╞╴_!	h
	111':	QMP (60 ⁰ , 5 cm). QMP + minor wolframite							ļ	├

Pro	perty	PLU	0	District Dawson	Hole No. 81-5	••							
Co	mmence	dt		Location	Tests at	Hor. Comp.			1				
Co	mpleted			Core Size	Corr. Dip	Vert. Comp.	··		-		٩		
Co	ordinate	<u>s</u>			True Brg.	Logged by					ā	ļ	E
Ob	jective			· · · · · · · · · · · · · · · · · · ·	% Recov.	Date			Claim	Brg.	Collar Dip	Elev.	Length
	lage		Description				Sampte	Length	O Anal Mo	vsis	o ppr Cu		1=
From					(22)		140-150			200		-	
	74' -	146'	116':	Quartz k-feldspar pegn	matite (90 ⁰ , 3 cm). E molybdenite in quartz vein.		150-160		· · · · · · · · · · · · · · · · · · ·	10		24	
			<u>117':</u> 118'-119'		ore and cut by QMP molybdenit		160-170		1	20		2.4	+
			118 -119	Quartz + MoS_2 (80 ⁰ , 2			170-180			500			
			122.5':	$\frac{\text{Quartz} + \text{MOS}_2(30, 2)}{\text{OMP}(45^0, 2 \text{ cm}) \text{ with } \text{u}}$	ell developed pink to buff k-	-feldsnar mineralization-							1-
			122.9.	as have most QMP veins					1				
			122 5'-142'		res - mainly quartz + MoS ₂₁ bu	ut also OMP + trace							1
				MoS ₂ (42 cm of QMP alt									Γ
			137':		zoned quartz crystals with to	erminations pointing							
					ljacent disseminated MoS ₂ in I								
1	46' -	157.5'	Quartz-biotite por		euhedral to subhedral guartz								
					ypidiomorphic granular matrix								
				artz, 35% plagioclase and					<u> </u>				
			Veins: 148.5':	Quartz + biotite + Mos	5 ₂ (3 mm); 155 (3 mm).								ļ
			155':	QMP (1 cm).	••				1				
1	57.5' -	178'	Medium grained bio	ite granite with 10 cm qu	artz + k-feldspar pegmatite :	zone near contact at							1
			157.5'. Note dis	seminated MoS ₂ in contact	zone and 8 mm zoned quartz	grains. From 167,5'				Į	ļ		-
			to 167' there is	a zone of fine grained gr	anite containing quartz phene	ocrysts and from 167'			- 	[]	[ļ	
			to 168' the biot	ite granite contains "incl	usions" of medium grained gra	anite porphyry with					<u> </u>		
			quartz and k-feld	lspar phenocrysts. Contac	ts are sharp. Disseminated I	MoS ₂ present in biotite				 			Ļ

Property PLUTO	District Dawson H	Hole No. 81-5	•••					1	
Commenced	Location T	Tests at	Hor. Comp.					1	1
Completed	Core Size C	Corr. Dip	Vert. Comp.					1	
Co-ordinates		True Brg.	Logged by					Collar Dip	'
Objective	c	% Recov.	Date			Claim	Brg.	llar	Elev.
						O I	E	<u>8</u>	
Footage From To	Description			Sample No.	Length	Analy Mo		pp Cu	Pb
157.5' - 178'	Veins: 2 pyrite + quartz veins (80 ⁰ , 40 ⁰ , 2mm, 2mm	n)		180-190)	15		8	4 1
	2 OMP veins; one contains MoSo.			190-200		7		7	42
	165': Quartz + k-feldspar vein $(90^\circ,$	1 cm).		200-210		52		23	
178' -192.5'	Quartz + biotite porphyry (ie. QBP) - contact at 178'			210-220		189		10	95
	Veins: 6 QMP veins with k-feldspar rims $(25^{\circ}, 10^{\circ},$	35° , 15° , 10° , 10° , total	thickness = 4 cm)			160	90	38	180
	2 quartz + k-feldspar bands $(90^{\circ}, 2 \text{ cm})$.			230-240				21	
	1 quartz + biotite + trace Mo + k-feldspar	rim (2 mm).		240-250		26	600	59	205
	1 QMP + trace MoS_2 (10 ⁰ , 2 mm).			250-260		24	90	13	115
	$1 \text{ QP} + \text{trace MoS}_{2}(60^{\circ}, 2 \text{ mm}).$				<u> </u>				
192.5' - 212'	Mixed granite (contact c/a at $192.5^{\circ} = 45^{\circ}$) and QBP.	The age relationship are	not clear.						<u> </u> '
	Evidence further down the drill hole indicates that	: the QBP intrudes the grar	nite (xenoliths						<u> </u>
	of granite in QBP).						I	L	,
212' - 257'	Coarse grained granite with 3% biotite; note 1 cm qua	irtz and k-feldspar megacry	ysts from 255' to						ļ'
	257'.								<u> </u>
	Veins: 197'-217': 3 QMP veins (20 ⁰ , 20 ⁰ , 30 ⁰ , eac	ch 1 cm); one of the veins	carries wolframite	<u>.</u>				.	.l
	and a steely grey mineral - gal								.↓'
	: 15 trace mineralized veins (mai	inly quartz + MoS ₂ , quartz i	+ biotite + pyrite				I!		
	$+ MoS_2 - all 1-2 mm$).				<u> </u>				·
	217'-236': 6 QMP veins (10 ⁰ - 30 ⁰ , 6 cm tot						!	_	-{'
	13 MoS ₂ bearing veins (quartz +	$MoS_2 \pm pyrite \pm biotite).$					1		'

211-9437

Property PLUTO	District Dawson	Hole No. 81-5						
Commenced	Location	Tests at	Hor. Comp.		 			
Completed	Core Size	Corr. Dip	Vert. Comp.		 			
Co-ordinates		True Brg.	Logged by				ä	
Objective		% Recov.	Date		 Claim	Brg.	Collar Dip	Elev.
Footage Des	cription			Sample	Analy	ysis	mag	
From To				No.	 Mo	W	Cu	Pb
212' - 257'	236'-257': 7 QMP veins (30 ⁰ ,	, 40 ⁰ , 30 ⁰ , 90 ⁰ , 5 ⁰ , 30 ⁰ , 4 cms to	<u>tal).</u>	260-270	 21		8	58
	1 QMP with dissen		1 MARINA M3 * M4 * /11 * 7 * 7	270-280	 	40	7	24
	<u> 1 quartz + biotit</u>	te vein (0 ^{0°} , 2 mm) cut by quartz +	pyrite.	280-290	 55		7	40
	l quartz + biotit	te + trace MoS ₂ (8 mm).		290-300	 	90	6	53
257' - 268' G	rey QBFP with quartz to 8 mm, feldspar	<u>r to 1 cm and biotite to 5 mm in f</u>	ine grained matrix:	300-310	 74	90	24	125
	contact at 45 ⁰ . Note how QMP alterat		ntact.		 ↓ ¹			
	Veins: 260": QMP + wolframite				 '	ļ	 	
	160'-268': K vein (80 ⁰ , 6 mm	n)			 		ļ]	
	2 quartz + MoS ₂ (ļ'		╞╴┈┤	
		ed quartz + muscovite + MoS ₂ .			 	!	 	
	parse grained granite with 3 QM veins				 	<u> </u> !		
270.5'-294.8' QI	BFP with 2-6% quartz phenocrysts (8 mm	n max.), 5-10% biotite, k-feldspar	phenocrysts have		 ļ	 	 	i
	gradational contacts (5%). Quartz ph	nenocrysts are sometimes glomeropo	rphyritic. Matrix is		 	<u> </u> !	ļ	
	fine grained.				 	<u> </u>	 	
		(10 ⁰ , 2 mm); 276': quartz (80 ⁰ , 3 m	mm); 278.5': quartz +		 	ļ!		
	pyrite (45 ⁰ , 2 mm				 '	ļ	┨	\vdash
		(80 ⁰ , 3 mm) cut by quartz + MoS ₂ (ļ	ļ	┨	
		+ trace MoS ₂ (40 ⁰ , 3 mm); 282': qu	artz + muscovite +		 	ļ	↓!	
	pyrite (60 ⁰ , 5 mm				 		 	
	283.5': Quartz + k-felds	par + MoS ₂ (5 mm); 287': QMP (60 ⁰ ,	3 mm).		 			

Property	PLUTO	District Dawson	Hole No. 81-5	••						
Commenced		Location	Tests at	Hor. Comp.						
Completed		Core Size	Corr. Dip	Vert. Comp.						
Co-ordinates			True Brg.	Logged by					dio	
Objective	n anna sann a san ann a r an an an an an an an an an an an an an		% Recov.	Date			Ξ	Brg.	Collar Dip	Elev.
							ō	in the second		and the second second second
Footage From To	Description				Sample 1	Length	Anal Mo	lysis W	PP Cu	n Pbl
270.5'-294.8'	291.5':	OMP $(90^{\circ}, 6 \text{ cm})$; 292':	QM - 2 veins (80 ⁰ , 3 mm).		310-320		48	90		160
294.8'-296.3'	Medium grained gran				320-330	+	12	90	· · · · · · · · · · · · · · · · · · ·	
296.3'-306.5'	OBFP.				330-340		25	90	24	б4
306.5'-308.7'	MGP				340-350		23	9Û		100
308.7'-337'	OBFP			•	350-360	1	32	150	10	58
		: OMP - 13 veins varying	from 2 mm to 6 cm in width. No	ote k-feldspar	360-370		10	32	8	78
		recrystallization alor	ng rims and trace MoS ₂ with 2 ve	ins (c/a: 5 ⁰ , 45 ⁰ , 45	9,370-380		8	450	8	193
		5 ⁰ , 10 ⁰ , 60 ⁰). Note w	olframite associated with QMP at	t 298',	380-390		23	50	16	140
	1 State of the second s second second s second second second second quartz + biotite vei			390-400	4	15	35	8	256	
		3 quartz + MoS_2 veins	$(80^{\circ} - 90^{\circ}, all 2 mm).$							
	311'-330'	: Phlogopite (90 ⁶ , 1 cm)			*Cominc	o Lab				
		8 QMP veins $(10^{\circ}, 60^{\circ})$	80 ⁰ , 0 ⁰ , 60 ⁰ , 60 ⁰ , 19 cm total)			<u> </u>			
		2 quartz + trace MoS ₂	(90 ⁰ , 2 mm).						 	
			trace MoS ₂ (0 ⁰ , 3 mm).					1		
		2 QP (0 ⁰ , 70 ⁰ , 5 mm, 2	2 mm).				<u> </u>			
	330'-337'	: 6 minor QMP veins (all	approximately 5 mm).			ļ				ļ
337' - 346'	Granite (MGP)							ļ	ļ	ļ
	Veins: 337'-346'	: 9 QMP + fluorite + tra	nce MoS ₂ veins (70 ⁰ - 90 ⁰ , 1-5 cm	n) with k-feldspar				ļ		
		rims.							ļ	
346' - 434'	QBFP					1				

211-9437

			D		01 5	◆ •						
Property PLUTO		District	Dawson	Hole No.	81-5							
Commenced		Location		Tests at		Hor. Comp.					۱ ^۱	
Completed		Core Size		Corr. Dip		Vert. Comp.					٩	
Co-ordinates	· · · · · · · · · · · · · · · · · · ·			True Brg.		Logged by			~		r Dip	
Objective				% Recov.		Date			laim	Brg.	Collar	Elev.
Footage	escription						Sample	Length	O Anal	l⊢ ysis		<u>m</u>
From To	•						No.		Мо	W	Cu	РЬ
346' - 434'	365'-384'			veins at 369' (90 ⁰	5 mm), 370'	(85 [°] , 3 cm),	400-410		14	20	1	22
				7' (85 ⁰ , 2 cm).			410-420		27	30	4	14
		17 QMP <u>+</u>	trace MoS ₂ ve	ins. Note wolfram	te in veins a	it 378' (45 ⁰ , 1 cm)	420-430		9	62	1	12
		and 374'	(20 ⁰ , 1 cm).	MoS ₂ in veins at 3	83.5' (85 ⁰ , 2	2 mm), 382' (45 ⁰ ,	430-440		27	40	10	25
		2 cm), 3	81' (45 ⁰ , 0.5	cm), 378.5' (20 ⁰ ,	cm), 376.5'	(60 ⁰ , 2 nm).	440-450		<2	12	<1	18
	384'-403'	15 QMP ±	fluorite + k-	feldspar rims.			450-460		3	10	2	30
		2 k-feld	lspar veins at	399' (85 ⁰ , 2.5 cm,	1 cm).		460-470		88	33	1	22
		traces o	f molybdenite	in 3 veins.			470-480		6	3	<1	15
	403'-422'	10 veins	of QMP ± fluo	rite; xenoliths of	granite at 41	7.5', 421'-422';	480-490		5	20	3	22
		no molyb	denite or wolf	ramite observed.			490-500		11	30	9	49
	422'-434'	5 veins	of QMP (<1 cm)	•			500-510		34	70	<1	16
434' - 445'	MGP with less than	l% biotite.	Note 2 veins	of QMP and dyke o	QBFP cutting	MGP.	510-520		26	20	2	13
445' - 457'	Xenoliths of MGP in	QBFP matri	x. 4 QMP vein	S.			520-530		101	c210	20	192
457' -462.8'	MGP, 1 vein QMP.						530-540		4	8	2	22
462.8'-549'	QBFP: 469':	ex. moly	bdenite on fra	cture.							Í	
	463':	molybder	ite on margins	of vein (5 ⁰ , 0.5	m)							
	479.5':	molybder	ite in guartz	vein.								Í
	480'-500'	12 veins	of QMP ± fluo	rite with traces o	molybdenite	at 492' (30 ⁰ , 0.5 cm)						İ
						quartz + plagioclase						
		with coa	rse grained k-	feldspar along mar	ins.				l			

211-9437

.

Property PLUT0	District Dawson	Hole No. 81-5				1			'
Commenced	Location	Tests at	Hor. Comp.		ļ	l			
Completed	Core Size	Corr. Dip	Vert. Comp.	• ••••••••••••••••••••••••••••••••••••	1				
Completed Co-ordinates		True Brg.	Logged by		1			d d	
Objective		% Recov.	Date			Ε	Brg.		lev.
Objective						0	 ⊢		<u>Im</u>
Footage Description From To				Sample No.		Anal Mo	llysis W		рт Pb
	AP'-537' Note granitic xenoli	ths at 530' (0.5'-1') and from {	$532' - 533.5' (45^{\circ} c/a)$	540-550			2 10		
402.0 - 345 - 345		(4 ⁰ , 1 cm, minor wolframite), 52		550-560	and an and a second	1 .	2 20	1	53
		$524'$ (10° , 1 cm, traces molybde	140, 12 000	560-570			3 10		29
5?	37'-549': 4 veins QMP with trac			570-580	,††	4	1 10	4	32
	enoliths of MGP.			580-590	,	16	5 8	<1	32
	veins of QMP ± fluorite.			590-600	, 	40) 12	<1	18
		enocrysts; approx. 33 QMP ± fluo	orite veins.	600-610	,	130	50	8	34
		framite vein $(90^\circ, 0.2 \text{ cm})$.		610-620	,	6	5 14	2	52
	,558-560: granitic xenoliths.			620-630	1	68	3 24	4	23
	a sa sanaa sa sa sa sa sa sa sa sa sa sa sa sa s	e occurrence in fracture (80 ⁰ , (0.1 cm).	630-640	/ /	20) 24	3	29
	96': granitic xenolith.			640-650	<u>ب</u> ا	14	1 20	4	32
598.5' - 609' MGP				· · · · · · · · · · · · · · · · · · ·	/			1.	
Veins: 8	QMP <u>+</u> fluorite veins.				· ·				
		aces wolframite (80 ⁰ , 0.2 cm).		* Comine	co Lab!	[
		e at 603.5' (60 ⁰ , 2.5 cm, excelle			Į!	Í			
cm, trace)), 604.2' (75 ⁰ , 0.2 cm, trace),	. 605' (90 ⁰ , 0.2 cm, trace) and i			1!				_
	5 ⁰ , 2-3 cm).				!				
		feldspar rims. Note well develo			_ _ '				
fractures	at 622' (90 ⁰ , 0.1 cm), 624' (90	90 [°] , 0.4 cm), 630' (80 [°] , 0.2 cm)	2, 631' (75 ⁰ , 0.3 cm).		'				
	tz + k-feldspar pegmatite vein a				, ,	1			

Hole No. 81-5 Tests at Corr. Dip True Brg.	Hor. Comp. Vert. Comp.							
Corr. Dip							. 1	
1100 019	Logged by					dio		
% Recov.	Date			Claim	Brg.	Collar Dip	÷.	_ength
		1	T	1Ö	⊢ ⊢	ပိ	Elev.	Le L
		Sampte No.	Length	Mo	W	ppm Cu	Pb	Z
		650-660		10	450	8	195	1
ite bearing quartz vein (85	0 , 0.2 cm).	660-670		62				
ure (90 ⁰ , 2 mm).		670-680		44	80	16	68	
ing and Andrews Commenced States and a second state		680-690)	98	120	34	110	
± muscovite veins (10 ⁰ , 2	mm; 80 ⁰ , 1 cm; 90 ⁰ , 1 mm;	690-700		24	100	32	178	1
							ļļ	
5'. Note pegmatitic phase	in granite at 662.7'.		ļ	ļ			i	
						ļ		
				Į				
				 				
	e + quartz + k-feldspar		<u> </u>	 	ļ			
		ļ		 				
					ļ		┝┤	
olybdenite veins (45 ⁰ , 2 mm	n; 35 [°] , 2 mm; 55 [°] , 5mm;						┟───┼	
				 				
		-	-					
	590 '.				<u> </u>	┝		
	ure (90 ⁰ , 2 mm). <u>+ muscovite veins (10⁰, 2</u> 5'. Note pegmatitic phase ins (45 ⁰ - 60 ⁰), Molybdenit ex). on in 11 veins (80 ⁰ - 90 ⁰). + biotite + molybdenite ve olybdenite veins (45 ⁰ , 2 mm led 1 mm fracture/vein.	\pm muscovite veins (10 ⁰ , 2 mm; 80 ⁰ , 1 cm; 90 ⁰ , 1 mm; 5'. Note pegmatitic phase in granite at 662.7'. ins (45 ⁰ - 60 ⁰), Molybdenite + quartz + k-feldspar ex). on in 11 veins (80 ⁰ - 90 ⁰). + biotite + molybdenite vein (80 ⁰ , 1.5 cm). olybdenite veins (45 ⁰ , 2 mm; 35 ⁰ , 2 mm; 55 ⁰ , 5mm; led 1 mm fracture/vein. teration between 689' and 690'. eins (80 ⁰ to 90 ⁰).	No. 650-660 ite bearing quartz vein $(85^{\circ}, 0.2 \text{ cm})$. 660-670 ure $(90^{\circ}, 2 \text{ mm})$. 670-680 \pm muscovite veins $(10^{\circ}, 2 \text{ mm}; 80^{\circ}, 1 \text{ cm}; 90^{\circ}, 1 \text{ mm}; 690-700 \pm muscovite veins (10^{\circ}, 2 \text{ mm}; 80^{\circ}, 1 \text{ cm}; 90^{\circ}, 1 \text{ mm}; 690-700 5'. Note pegmatitic phase in granite at 662.7'. 5'. Note pegmatitic phase in granite at 662.7'. on in 11 veins (80^{\circ} - 90^{\circ}). + biotite + molybdenite vein (80^{\circ}, 1.5 \text{ cm}). olybdenite veins (45^{\circ}, 2 \text{ mm}; 35^{\circ}, 2 \text{ mm}; 55^{\circ}, 5 \text{ mm}; led 1 mm fracture/vein. teration between 689' and 690'. eins (80^{\circ} \text{ to } 90^{\circ}). $	No. 650-660 ite bearing quartz vein $(85^{\circ}, 0.2 \text{ cm})$. 660-670 ure $(90^{\circ}, 2 \text{ mm})$. 670-680 \pm muscovite veins $(10^{\circ}, 2 \text{ mm}; 80^{\circ}, 1 \text{ cm}; 90^{\circ}, 1 \text{ mm}; 690-700 \pm muscovite veins (10^{\circ}, 2 \text{ mm}; 80^{\circ}, 1 \text{ cm}; 90^{\circ}, 1 \text{ mm}; 690-700 5'. Note pegmatitic phase in granite at 662.7'. 60^{\circ}. 60^{\circ}. 60^{\circ}. 60^{\circ}. 610^{\circ}. 610^{\circ}. $	No. Mo 650-660 10 ite bearing quartz vein $(85^{\circ}, 0.2 \text{ cm})$. 660-670 ure $(90^{\circ}, 2 \text{ mm})$. 670-680 \pm muscovite veins $(10^{\circ}, 2 \text{ mm}; 80^{\circ}, 1 \text{ cm}; 90^{\circ}, 1 \text{ mm}; 690-700 24 \pm muscovite veins (10^{\circ}, 2 \text{ mm}; 80^{\circ}, 1 \text{ cm}; 90^{\circ}, 1 \text{ mm}; 690-700 24 5'. Note pegmatitic phase in granite at 662.7'. 690-700 5'. Note pegmatitic phase in granite at 662.7'. 690-700 690^{\circ}, 2 \text{ mm}; 35^{\circ}, 2 \text{ mm}; 55^{\circ}, 5 \text{ mm}; 690-700 690^{\circ}, 1.5 \text{ cm}. 690-700 690^{\circ}, 2 \text{ mm}; 35^{\circ}, 2 \text{ mm}; 55^{\circ}, 5 \text{ mm}; 690-700 10 \text{ mm} fracture/vein. 690^{\circ}. 100^{\circ} to 90^{\circ}). 100^{\circ} to 90^{\circ}). $	No. Mo M 650-660 10 450 ite bearing quartz vein $(85^{\circ}, 0.2 \text{ cm})$. 660-670 62 150 ure $(90^{\circ}, 2 \text{ mm})$. 670-680 44 80 \pm muscovite veins $(10^{\circ}, 2 \text{ mm}; 80^{\circ}, 1 \text{ cm}; 90^{\circ}, 1 \text{ mm}; 690-700 24 100 \pm muscovite veins (10^{\circ}, 2 \text{ mm}; 80^{\circ}, 1 \text{ cm}; 90^{\circ}, 1 \text{ mm}; 690-700 24 100 5'. Note pegmatitic phase in granite at 662.7'. - - - ins (45^{\circ} - 60^{\circ}), Molybdenite + quartz + k-feldspar - - - ex). - - - - - on in 11 veins (80^{\circ} - 90^{\circ}). - - - - - + biotite + molybdenite vein (80^{\circ}, 1.5 \text{ cm}). - - - - - 1ed 1 mm fracture/vein. - <$	No. Mo W. Cu. 650-660 10 450 8 ite bearing quartz vein $(85^\circ, 0.2 \text{ cm})$. 660-670 62 150 8 ure $(90^\circ, 2 \text{ mm})$. 670-680 44 80 16 \pm muscovite veins $(10^\circ, 2 \text{ mm}; 80^\circ, 1 \text{ cm}; 90^\circ, 1 \text{ mm}; 690-700 24 100 32 \pm muscovite veins (10^\circ, 2 \text{ mm}; 80^\circ, 1 \text{ cm}; 90^\circ, 1 \text{ mm}; 690-700 24 100 32 5'. Note pegmatitic phase in granite at 662.7'. $	No. Mo W Cu Pb 650-660 10 450 8 195 ite bearing quartz vein $(85^\circ, 0.2 \text{ cm})$. 660-670 62 150 8 63 ure $(90^\circ, 2 \text{ mm})$. 670-680 44 80 16 68 \pm muscovite veins $(10^\circ, 2 \text{ mm}; 80^\circ, 1 \text{ cm}; 90^\circ, 1 \text{ mm}; 690-700 24 100 32 178 \pm muscovite veins (10^\circ, 2 \text{ mm}; 80^\circ, 1 \text{ cm}; 90^\circ, 1 \text{ mm}; 690-700 24 100 32 178 5'. Note pegmatitic phase in granite at 662.7'. 2 2 2 2 2 100 32 178 ins (45^\circ - 60^\circ), Molybdenite + quartz + k-feldspar 2 $

Scale Colour Plot & Dips	Drill Hole Record		
0	Property PLUTO	District Dawson	Hole No. 81-5
	Commenced	Location	Toete at

			GUIIHAGU							+
roperty PLUTO	District Dawson	Hole No. 81-5								Choot
ommenced	Location	Tests at	Hor. Comp.							ľ
ompleted	Core Size	Corr. Dip	Vert. Comp.		· · · · ·					
o-ordinates		True Brg.	Logged by			_		Dip		5 4
bjective		% Recov.	Date	-		aim	Brg.	Collar	Elev.	Holo Nr
					T	Ö Anal	H- 1	റ്റ	ă (Ê Ĉ
ootage Descriptio	on			Sample No.	Length	Mo	W	Cu	Pb	Zn
662.7' -797.2'	688'-707': Note 1.5 cm of fine	grained phase at 690'.		700-710		8	120	1	49	29
	707'-726': 7 veins of QMP tota	11ing 50 cms (20 ⁰ - 80 ⁰).		710-720		81	122	26	124 1	79
		+ molybdenite $(0^{\circ} to 80^{\circ}, 4 v)$		720-730		252	67	20	68 1	83
	726'-744': 7 cms QMP in 9 vein	s (all 80 ⁰ - 90 ⁰ , 2 veins hav	e traces molybdenite).	730-740		41	160	16	54	93
	: 3 well mineralized	quartz + muscovite + molybden	ite (80 ⁰ - 90 ⁰ , 3 mm).							
	: Note molybdenite as	sociated with layering in gra	nite between 743' and							
	744' (c/a = 90 ⁰).									
	744'-763': 5 QMP veins, 6 cms	total thickness (45 ⁰ - 90 ⁰).								
	: 1 quartz + pyrite +	• molybdenite vein (5 ⁰ , 1 cm).			ļ	1				
	: 1 quartz + molybden	ite (trace) + phlogopite + py	rite + beryl (?) (90 ⁰ ,							
	1 cm).					1				
	: 1 pyrite + quartz (45 [°] , 2 mm).								
	463'-782': 4 QMP veins, 14 cms	total (all 90 ⁰).	· • • • • • • • • • • • • • • • • • • •		 					
	: 2 pyrite + quartz v	eins cross-cutting QMP veins	(10 ⁰ , 4 mm).							
	: Note well developed	molybdenite associated with	QMP vein at 782'.							
	782'-797.2': 3 QMP veins, 6 cm t	otal (80 ⁰ - 90 ⁰ , trace molybd	enite associated with	_						
	<u>1 QMP).</u>									
	: Quartz + muscovite	+ wolframite at 798' (50 ⁰ , 2	<u>mm).</u>							
797.2' -801.5' QFP wi	ith sharp contact with MGP (c/a = 50 ⁰)	; contains vein of quartz + m	uscovite + wolframite.							

211-9437

EXHIBIT "A"

STATEMENT OF EXPENDITURES

For the Period 10 July to 4 August 1981

,

Direct Drilling Costs

\$85,182.35

Contractor:

Amity Drilling Ltd. 10 - 12th Avenue, Whitehorse, Yukon Y1A 4J4

I.A. Paterson — Project Geologist

and a second second second second second second second second second second second second second second second

IAP/vmk

COMINCO LTD.

WESTERN DISTRICT 2 December 1981

EXHIBIT "B"

PLUTO GROUP

DAWSON M.D., Y.T.

STATEMENT OF QUALIFICATIONS

I, Ian A. Paterson, with business address at 700 - 409 Granville Street, Vancouver, British Columbia, do hereby certify that I have supervised the field work and have assessed and interpreted the data resulting from this diamond drilling programme on the Pluto Mineral claims.

I also certify that:

EXPLORATION

116C/8

NTS:

- I graduated from the University of Aberdeen, Scotland with a B.Sc. (Hons.) degree in 1967.
- I graduated from the University of British Columbia with a Ph.D. degree in 1973.
- 3) I am a registered Professional Engineer of the Province of British Columbia, a Fellow of the Geological Association of Canada and a member of the Canadian Institute of Mining and Metallurgy.
- I have been engaged in my profession since my graduation in 1973.

5

5) I have been employed by Cominco Ltd. since 1974.

Respectfully Submitted:

I.A. Paterson Project Geologist

IAP/vmk

EXHIBIT "C"

IN THE MATTER OF THE ACT RESPECTING QUARTZ MINING IN THE YUKON TERRITORY AND IN THE MATTER OF A DIAMOND DRILLING PROGRAMME CARRIED OUT IN PORTIONS OF THE PLUTO MINERAL CLAIMS LOCATED 54 KM NORTHWEST OF THE TOWN OF DAWSON IN THE DAWSON MINING DIVISION OF THE YUKON TERRITORY.

STATEMENT

I, Ian A. Paterson of the City of Vancouver in the Province of British Columbia, make oath and say:

- THAT I am employed as a geologist by Cominco and, as such, have a personal knowledge of the facts to which I hereinafter depose;
- THAT included in this report and marked as Exhibit "A" is a true copy of expenditures incurred on a diamond drilling programme on the Pluto mineral claims;
- 3. THAT the said expenditures were incurred between the 10th of July and the 4th of August 1981 for the purpose of mineral exploration on the above claims;
- 4. THAT the diamond drill core for holes 1 to 5 is stored at the cleared campsite at 12+00N on the baseline near DDH 81-3.

I.A. Paterson Project Geologist

Dated this 7 day of December, 1981, at Vancouver, British Columbia.