ASSESSMENT REPORT

on an

EM-16 SURVEY

Conducted July 30 - August 4, 1979

on the

TOKE 1 - 36 Mineral Claims

in the

Watson Lake Mining District, Y. T.

Claim Sheet 105G/7

Latitude 61°23'N Longitude 130°59'W

by

Colin V. Dyson, P.Eng.

March, 1980
This report has been examined by the Geological Evaluation Unit and is recommended to the Commissioner to be considered as representing work in the amount of $3,600.00.

J. Morris

Resident Commissioner or
Resident Mining Engineer

Considered as preliminary work under Section 30 of Yukon Quartz Mining Act.

R. H. Baxter

President Mining Inspector

Commissioner of Yukon Territory
TABLE OF CONTENTS

INTRODUCTION .. 1
PROPERTY, LOCATION AND ACCESS 1
GEOLOGY .. 1
ELECTROMAGNETIC SURVEY METHODS & TECHNIQUES 2
RESULTS .. 3
CONCLUSION ... 3

ILLUSTRATIONS

Fig. 1 TOKE Claims, Location

Fig. 2 TOKE Claims: EM 1-16 Survey - Hawaii
 transmitter
 TOKE Claims EM 1-16 Survey - Seattle
 transmitter

Following Page

Page 1
INTRODUCTION

The TOKE 1 - 36 claims were staked in 1977 to cover the drainage basin above a uranium soil geochemical anomaly which was located in 1976 during regional reconnaissance surveys by Archer, Cathro & Associates. In 1977 detailed grid soil geochemistry and a ground radiometric survey was conducted over parts of the claim group, followed by hand pitting in several areas.

In 1979, a ground EM-16 survey was conducted over part of the claim area by Mr. Pat Henry of Chevron Standard Limited on behalf of Chevron Canada Limited under the supervision of Mr. U. Schmidt, Geologist for Archer, Cathro & Associates between July 30 - August 4.

PROPERTY, LOCATION AND ACCESS

The property consists of 36 whole mineral claims recorded in the Watson Lake Mining District as follows:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant Numbers</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOKE 1 - 36</td>
<td>YA21495 - YA21530</td>
<td>29 January 1980</td>
</tr>
</tbody>
</table>

The property is located at latitude 61°23'N and longitude 130°59'W on NTS claim sheet 105G/7 adjacent to Grass Lake, approximately 70 miles southeast of Ross River (Fig. 1). Access was via helicopter from Whitehorse, returning via Charter float-plane from Lampman Lake to Whitehorse.

GEOLOGY

Regionally the Grass Lakes area is underlain by a variety of metamorphic rocks intruded by a quartz monzonite stock of Cretaceous age. The northwest trending
Tintina Fault lies approximately 6 miles south of Grass Lakes and is the dominant structural feature in the area. Locally the TOKE claims are underlain by porphyritic quartz monzonite which is cut by aplite dykes. Exposures are limited on the claim group which is covered in part by glacial till and swamps.

ELECTROMAGNETIC SURVEY METHODS & TECHNIQUES

The EM-16 survey was completed with a Ronka unit. The measurement range for the in-phase is ±150% and for the out-of-phase ±40% with an accuracy of 1%. The EM-16 is a sensitive audio-receiver that uses the signal transmitted by several American military stations in the 15-25 kHz range. For this survey the station "NPG" in Seattle, Washington at 18.6 kHz and the station Lualualei, Hawaii at 23.4 kHz were utilized. These stations are approximately 20° and 20° from the TOKE claims respectively. The primary magnetic field generated by the station is considered uniform over the surveyed area. When the primary magnetic fields meet conductive bodies in the ground, there will be secondary magnetic fields emitted. The Ronka EM-16 effectively measures the vertical components of these secondary fields. To take a reading the horizontal coil in the instrument is oriented along the magnetic field lines and the vertical coil is tilted to minimize the sound signal and the tilt angle recorded in percentage or degrees. This angle is a measure of the vertical real component (in-phase) of the induced secondary field. A second angle measurement of the minimum signal from the horizontal coil is then taken; this measurement is the quadrature or out-of-phase component. EM-16 in-phase and out-of-phase readings were taken every 25 feet along the cross lines. A total of 2.42 line miles of grid were covered with readings taken at 445 stations.
RESULTS

The EM-16 survey results are illustrated on Figures 2. Several weak conductors are indicated; they can be caused by structural features such as faults and by conductive overburden. The unfavourable direction of the Seattle transmitter station with respect to direction of survey lines diminishes the quantitative validity of that survey.

CONCLUSION

The EM-16 survey located several weak conductors on the TOKE claim which probably reflect fault structures or conductive clay horizons in the overburden.

Respectfully submitted,

C. V. Dyson, P.Eng.