GEOPHYSICAL REPORT
on the
MAGNETICS SURVEY

Pat 1-24 Claim Group
Latitude 61°03'
Longitude 131°24'
N.T.S. Sheet 105-G-3

Watson Lake Mining District
Yukon Territory

for
Tintina Silver Mines Limited
Toronto, Ontario

by
R. G. Hilker, P.Eng.,
R. G. HILKER LIMITED
Whitehorse, Yukon Territory

October 4, 1977
This report has been examined by the Geological Evaluation Unit and is recommended to the Commissioner to be considered as representation work in the amount of

$5,018.00

A. J. Mars

Resident Geologist or
Resident Mining Engineer

Considered as representation work under Section 53 (4) Yukon Quartz Mining Act.

B. R. Baxter

Supervising Mining Recorder

Commissioner of Yukon Territory
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Location and Access</td>
<td>2</td>
</tr>
<tr>
<td>Yukon Index Map - Sketch #1</td>
<td></td>
</tr>
<tr>
<td>Access Sketch - Figure 2</td>
<td></td>
</tr>
<tr>
<td>Yukon Quartz Mineral Claims</td>
<td>3</td>
</tr>
<tr>
<td>Pat Claim Group - Table I</td>
<td></td>
</tr>
<tr>
<td>Pat 1-24 Claim Group - Sketch #2A</td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td>4</td>
</tr>
<tr>
<td>Regional Geology</td>
<td>4</td>
</tr>
<tr>
<td>1972 G.S.C. Regional Geology</td>
<td>5</td>
</tr>
<tr>
<td>Regional Geology Table of Formations</td>
<td>7</td>
</tr>
<tr>
<td>1972 G.S.C. Table of Formations</td>
<td>8</td>
</tr>
<tr>
<td>Reference to Geology and Geophysics</td>
<td>9</td>
</tr>
<tr>
<td>Geophysical Survey</td>
<td>11</td>
</tr>
<tr>
<td>Magnetics Instrumentation</td>
<td>11</td>
</tr>
<tr>
<td>Survey Procedure</td>
<td>12</td>
</tr>
<tr>
<td>Personnel</td>
<td>13</td>
</tr>
<tr>
<td>Magnetic Interpretation</td>
<td>13</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>14</td>
</tr>
<tr>
<td>Certification</td>
<td>15</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

In the early part of 1961, Conwest Exploration discovered surface showings of silver-lead-zinc mineralization within a cirque in the southern part of the St. Cyr Mountain Range. The Eagle claim group was staked to cover the showings and surface exploration programmes have been conducted in 1961, 1962, 1968, 1974, 1975 and 1976 on the property.

During the fall of 1975, Hudson Bay Exploration and Development conducted an airborne magnetic and electromagnetic survey over a large area west of the Eagle silver-lead-zinc showings and north of the Liard River. Subsequently, 300-400 mineral claims were staked in the area of Junkers Lake and the Liard River. The area covered by the claims is located in a valley at an elevation of about 3,500 feet and is relatively flat in comparison to the St. Cyr Mountains.

The magnetic trend in the overburden-covered valley area is in a north-south direction.

Therefore, Tintina Silver Mines Limited staked the Pat 1-24 claim group in an area north of Junkers Lake.

A magnetic survey was conducted on the Pat claim group during August (11th to 16th) 1977 for the purpose of assessment work and to commence exploration work on the claims.
LOCATION AND ACCESS

The Eagle claim group is situated in the southern St. Cyr Mountains at the headwaters of the Liard River in the southeastern Yukon Territory, N.T.S. Sheet 105-G-3. The property is approximately 110 miles northwest of Watson Lake, 140 miles east of Whitehorse and 75 miles southeast of Ross River.

An airstrip presently in useable condition was built five miles east of the property in 1962; a winter road was also constructed from Mile 790 on the Alaska Highway, approximately 110 miles into the area of the property.

For the present programme, the personnel and equipment were mobilized from Whitehorse and Ross River to the airstrip during August, using fixed wing aircraft. The camp was demobilized in the same way - by using a fixed wing aircraft from the airstrip to Whitehorse. A Bell 47-B helicopter was used daily to transport the survey crew from the airstrip to the Pat claims.

Best access to the property with an all-weather road would be from the Campbell Highway. At present, a tractor trail exists from the highway, approximately 35 miles southeast of the town of Ross River, to the Hoole River - a distance of about 25 miles. This trail would require upgrading, and its extension to the property would entail a further 25 miles of road (see Access sketch).
YUKON QUARTZ MINERAL CLAIMS

The Pat claim group of Tintina Silver Mines Limited consists of 24 contiguous claims; the group is located in the Watson Lake Mining District, Yukon Territory, on N.T.S. Sheet 105-G-3 and is centred at latitude 61°03' and longitude 131°24'.

Table I
Status and Lapse Dates - Pat Claim Group

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant Number</th>
<th>Anniversary Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat 1 - 8</td>
<td>YA 11354 - YA 11361</td>
<td>October 4, 1977</td>
</tr>
<tr>
<td>Pat 9 - 16</td>
<td>YA 11362 - YA 11369</td>
<td>October 4, 1977</td>
</tr>
<tr>
<td>Pat 17 - 24</td>
<td>YA 11370 - YA 11377</td>
<td>October 4, 1977</td>
</tr>
</tbody>
</table>
GEOLOGY

Regional Geology

The Eagle claims are located at the southern end of the St. Cyr Mountain Range, within the Pelly Mountains; this range trends northwest and is bounded on the southwest by the Nisutlin Plateau and on the northeast by the Tintina Valley, a strong, northwest trending fault zone which is a continuation of the Rocky Mountain Trench. The claims are within a mountainous terrain, elevations ranging from 4,000 feet to a peak of 7,393 feet just north of the claim group.

Reconnaissance mapping by the Geological Survey of Canada has shown the mountains in this area to consist of folded and faulted sediments of early Paleozoic age which have been intruded by Jurassic and/or Cretaceous granitic rocks. The geology in the vicinity of the claim group is shown in Figure 3.

The oldest rock in the area, Unit 1, is a sequence of Lower Cambrian quartzite, phyllite and limestone. This unit, and in particular the limestone, forms the host rocks for the Tintina Silver property mineralization on the Eagle claim group located west of the Pat claims. These host rocks are overlain, often on southwesterly dipping thrust planes, by Unit 2, a thick sequence of Middle and Upper Cambrian (?) phyllites with some interbedded dolomite, greenstone and chert. Adjacent to granitic intrusive bodies, this rock is frequently altered to hornfels (Unit 2a).

Overlying Unit 2, mainly to the northwest of the property, is a Middle Paleozoic sequence of thick bedded dolomite with minor chert and sandy and silty dolomite, overlain locally by slate, shale, chert and minor greywacke (Unit 4). These rocks have been intruded by granitic rocks (Unit 5), mainly biotite granodiorite.
A roughly circular granodiorite plug approximately 1\(\frac{1}{2}\) miles in diameter forms the northern boundary of the Eagle claim group and cuts rocks of both Units 1 and 2.

Pleistocene glaciation has covered the entire area, moving towards the northwest, and subsequent alpine glaciation has sculpted the mountains, determining the present topography. Unit 12, unconsolidated glacial and alluvial deposits, fills the valleys and covers most slopes to between 4,000 and 5,000 feet elevations.

Structure in the area is dominated by the northwest striking Tintina Fault. The most important feature in the area of the Eagle claims is an anticlinal structure which trends parallel to the Tintina Fault. Small-scale folding associated with this structure is abundant, as is small-scale cross-faulting. Age relations between the various sedimentary units are often uncertain due to the thrust-faulting from the southwest, as many of the major contacts are thrust fault planes.

The Pat claim group is located on an overburden-covered flat area west of the Tintina airstrip and north of Junkers Lake. The property is dissected by creeks and rivers and bedrock is covered with approximately 20 - 50 feet thick aluvial valley sand and gravels.

1972 G.S.C. Regional Geology

During the recent geological mapping in the Anvil Range area by D. J. Tempelman-Kluit of the Geological Survey of Canada in 1972, a different age has been given to the Anvil Range Group than that previously mapped by R. B. Campbell, 1949-1954, and J. O. Wheeler, 1956, on Geology Map 1221-A Glenlyon. The phyllite and schist host rocks which contain the lead-zinc ore deposits in the Anvil district are thought to be Proterozoic and Paleozoic strata,
of the Hadrynian (?), Cambrian (?) and Ordovician (?) period. The difference in age classification is attributable to the additional geological information available since 1966 to the present as a result of the increased mining activity which has occurred since the mapping in 1949-1956 by Campbell and Wheeler. Thousands of feet of diamond drilling and subsequent core recovery together with the Anvil Mines' open pit mining operation has made abundant rock specimens available to Tempelman-Kluit for examination and study.

Tempelman-Kluit, on Geology Map 1261-A, has assigned an age of Upper Pennsylvanian and Permian to the Anvil Range Group - Unit 8. Campbell previously mapped the Anvil Range Group, Unit 15, as Mississippian or Later in age. A similar unit to Campbell's Unit 15 has been mapped by J. A. Roddick (1958, 1960) and L. H. Green (1960) on the Tay River Geology Map 13, 1961, which adjoins the Glenlyon sheet. On the Tay River sheet, the Mississippian (?) and/or Later (?) aged rocks are identified as Unit 9. In addition, Tempelman-Kluit has differentiated between the group and units which were previously combined in Campbell's Unit 15. The changes in the recent geology maps issued by the Geological Survey of Canada can be considered as updated and detailed geology resulting from the additional information obtained from areas of ore bodies. Therefore, the writer will follow the age and detail of units assigned by Tempelman-Kluit to the Anvil Range Group and Anvil area mineralized host rocks for the purpose of preparing this report.

"The core of Anvil Range is underlain by granodiorite and porphyritic quartz monzonite which form the Anvil Batholith, intruded in Mesozoic time. A sequence of Proterozoic and the Paleozoic strata, similar to that found extensively elsewhere in the Selwyn Basin, flanks the Anvil Batholith. This sequence includes two regional unconformities, one beneath Devono-Mississippian strata and another below Pennsylvanian-Permian succession. The older Paleozoic rocks, dominated by thick Cambrian (?) and Devono-Mississippian sequences, are mainly metamorphic and sedimentary, whereas the
Pennsylvanian-Permian rocks are largely volcanic.

Paleozoic beds have an aggregate thickness of about 15,000 feet. Small intrusions of Paleozoic or Mesozoic 'alpine' periodotite are associated with Permian volcanic rocks. A thick, post-Permian conglomerate lies along an important fault parallel to the Tintina Trench. Acid and basic tertiary volcanic rocks occur locally."

Regional Geology

Table of Formations

<table>
<thead>
<tr>
<th>CENOZOIC</th>
<th>Quaternary</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unconsolidated glacial and alluvial deposits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESOZOIC</th>
<th>Jurassic and/or Cretaceous</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Biotite granodiorite; quartz monzonite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PALEOZOIC</th>
<th>Silurian and Devonian</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Dolomite; chert, quartzite, slate, shale</td>
</tr>
<tr>
<td></td>
<td>Middle and Upper Cambrian</td>
</tr>
<tr>
<td>2</td>
<td>Phyllite; dolomite, greenstone, chert</td>
</tr>
<tr>
<td></td>
<td>Lower Cambrian</td>
</tr>
<tr>
<td>1</td>
<td>Quartzite, phyllite, limestone</td>
</tr>
</tbody>
</table>

(After J. O. Wheeler - Map 8 - 1960)
<table>
<thead>
<tr>
<th>Time Period</th>
<th>Formation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENOZOIC</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>12 - sandstone, shale, and conglomerate</td>
</tr>
<tr>
<td>MESOZOIC</td>
<td></td>
</tr>
<tr>
<td>Cretaceous</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>- mensonite and granodiorite</td>
</tr>
<tr>
<td>Triassic</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>- conglomerate with fragments of schist (unit 1), basalt (unit 8), serpentine (unit 9), sandstone, slate and limestone</td>
</tr>
<tr>
<td></td>
<td>Triassic and (?) Upper Permian</td>
</tr>
<tr>
<td>9</td>
<td>- serpentine and peridotite</td>
</tr>
<tr>
<td>PALEOZOIC</td>
<td></td>
</tr>
<tr>
<td>Pennsylvanian and Permian - Anvil Range Group</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>- chert, basalt and limestone</td>
</tr>
<tr>
<td>Devonian and Mississippian</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>- slate, chert, greywacke, chert-pebble conglomerate, and limestone</td>
</tr>
<tr>
<td>Middle Devonian</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>- limestone and dolomite</td>
</tr>
<tr>
<td>Devonian and Silurian</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>- quartzite</td>
</tr>
<tr>
<td>Ordovician and Silurian</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>- slate and chert</td>
</tr>
<tr>
<td>Hadrynian, Cambrian and (?) Ordovician</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- phyllite, schist, amphibolite (Anvil Range lead-zinc deposits host rocks)</td>
</tr>
<tr>
<td></td>
<td>Hadrynian (?) and (?) Cambrian</td>
</tr>
<tr>
<td>2</td>
<td>- skarn, schist, amphibolite, marble</td>
</tr>
<tr>
<td>Hadrynian</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- gritty quartzite</td>
</tr>
</tbody>
</table>

(Geology after D. J. Tempelman-Kluit - G.S.C. Bulletin 208)
Reference to Geology and Geophysics

Geophysics Paper 7838 G - Airborne Magnetics Sheldon Lake, Y. T. Sheet 105-J, Scale 1 inch = 4 miles.

Geophysics Paper 7005 G - Airborne Magnetics Quiet Lake, Y. T. Sheet 105-F, Scale 1 inch = 4 miles.

5. Geological Survey of Canada - Geology Sheets:

 Finlayson Lake, Y. T. - Sheet 105-G.
 Sheldon Lake, Y. T. - Sheet 105-J.
 Quiet Lake, Y. T. - Sheet 105-F.
 Tay River, Y. T. - Sheet 105-K.

GEOPHYSICAL SURVEY

Magnetics Instrumentation

A Scintex MF-2 magnetometer was used to conduct the magnetic survey over the grid system. Manufacturer's specifications of the instrument are as follows:

- **Maximum sensitivity:** 20 gammas per scale division on 1,000 gamma range
- **Readability:** 5 gammas or 1/4 scale division on 1,000 gamma range
- **Ranges:** 1,000 / 3,000 / 10,000 / 30,000 / 100,000 gammas
- **Maximum range:** ± 100,000 gammas
- **Latitude Adjustment Ranges:** 10,000 to 75,000 gammas; Northern Hemisphere
- **Power source:** Internal 6 volt rechargeable batteries

The Fluxgate magnetometer as defined by M. B. Dobrin in the textbook "Introduction to Geophysical Prospecting" is as follows:

"The Fluxgate magnetometer, also known as the saturable reactor, makes use of a ferromagnetic element of such high permeability that the earth's field can induce a magnetization which is a substantial proportion of the saturation value. If this field is superimposed upon a cyclic field induced by a sufficiently large alternating current in a coil around the magnet, the resultant field will saturate the core. The phase of each energizing cycle at which saturation is reached gives a measure of the earth's ambient field."

The MF-2 Fluxgate magnetometer measures the vertical component of total magnetic field; it does not require a tripod and only needs to be oriented in the general north magnetic pole direction. The sensitivity of the instrument cannot be changed except by rough handling. It reads directly in gammas.
Survey Procedure

A grid system was established on the Pat claim group by placing pickets on two base lines near the staking lines. The north-south baselines were chained by a Topofil instrument and lath was used for the pickets. A total of 20.88 linemiles of grid system was made for the magnetic survey; 17.55 linemiles of east-west cross-lines were turned off the baselines and stations were made every 100 feet by flagging and Topofil chaining to the claim boundaries.

Baseline 1: 2.04 miles and 10.63 linemiles of crosslines
Baseline 2: 1.29 miles and 6.93 linemiles of crosslines
Total Grid: 20.88 linemiles

A Magnetic Base Control Station was established at LO+00 baseline #1 with a value of 660 gammas and at LO+00 baseline #2 with a value of 680 gammas.

The magnetics survey was conducted on the 400 feet spaced line-grid with station intensities determined at each 100-foot interval on the crosslines. The survey was based on a Base Control Station with a value of 680 gammas and several conveniently located control stations were established. The control stations' gamma values were established from the Base Control Station by taking several readings between the two control stations in short intervals of time.

When the crosslines were surveyed with the magnetometer, a time interval of two hours maximum was permitted between the established and predetermined control stations. Therefore, a close check on daily diurnal and magnetic storms was possible during the magnetics survey on the Pat claim group. If the diurnal difference was 200 gammas or more in a two-hour loop between control stations, the line was resurveyed. Very minor erratic diurnal magnetic differences were experienced during the time period of the magnetics survey on the claim group.
Personnel

The field work was conducted by R. G. Hilker, magnetometer operator, August 11 through August 16, 1977. R. G. Hilker also did the data processing, magnetic plan and contouring.

G. R. Seybold was responsible for the linegrid chaining, flagging, pickets and compass alignment of the baselines and crosslines during the period August 11 through August 16, 1977.

The interpretation report and drafting was done by R. G. Hilker, P.Eng., during October, 1977.

Magnetic Interpretation

In general, the magnetic data is uniform with very little intensity difference across the claim block. The majority of the magnetic values lie between 550 and 700 gammas.

The magnetic contours suggest a north-south bedrock trend over a similar rock type (see Magnetic Survey Plan – Scale: 1" = 400' – in pocket).

The Pat claim group has no rock outcrop exposed at surface and probably contains 20 - 50 feet of valley alluvial sand-gravel on bedrock. No bedrock was noted in the creek and river beds having 20 - 30 foot gravel banks in the relatively flat terrain which lies within the claim block.

Outcrops of carbonaceous limestone and black shale were noted southwest and north of the Pat claims. On the Eagle claim group, both limestone and shale units contain pyrrhotite. It is possible, as suggested by the low magnetic values, that the Pat claims are located on limestone and shale rock units. The low magnetic relief may be due to pyrrhotite contained in limestone and shale beds.
CONCLUSIONS AND RECOMMENDATIONS

No bedrock exposed at surface on the Pat claims presents an accurate interpretation of the low value magnetic data.

The claim block may be located on limestone and shale bedrock which is overlain by 20 - 50 feet of valley alluvial sand-gravel overburden.

It is recommended to conduct an EM-16 electromagnetic survey over the Pat claim group to check for conductors. The following would be the costs involved:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM-16 Survey</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>Aircraft Transportation</td>
<td>$1,200.00</td>
</tr>
<tr>
<td>Camp Costs</td>
<td>$800.00</td>
</tr>
<tr>
<td>Camp Rental</td>
<td>$400.00</td>
</tr>
<tr>
<td>Radio Communications</td>
<td>$100.00</td>
</tr>
<tr>
<td>Miscellaneous Travel</td>
<td>$400.00</td>
</tr>
<tr>
<td>Report on Survey</td>
<td>$800.00</td>
</tr>
</tbody>
</table>

$6,700.00

R. G. Hilker, P.Eng.,
October 4, 1977.
APPENDIX

==-------------
The MF-2 is a completely new concept in vertical force fluxgate magnetometers. These instruments, which are designed for fast and accurate mineral ground surveys, are orientation independent, self levelling and require no tripod.

The MF-2 combines in one compact 5½ lb. package electronics, sensor and rechargeable batteries. With the latest I.C. and F.E.T. circuitry and high precision components, a temperature stability better than 1 gamma per degree is standard (with .25 gamma on special order) over a range of -40° to +40° centigrade.

The instrument has a built-in hemisphere polarity switch providing two overlapping ranges. For the Northern hemisphere the full range is -80,000 to -20,000 gammas, and reversible for the Southern hemisphere.

A calibrated feedback system can be provided which makes it possible to determine the total vertical component strength.

Measuring accuracy, on the 100 gamma scale is 0.5 gamma, and on the 1000 gamma scale 5 gammas.

The Scintrex MF series of magnetometers have been in use for many years in varied applications, e.g. ground reconnaissance, base station recording and monitoring, study of magnetic properties of rocks, observatory monitoring and recording of both vertical and horizontal components.

OPTIONAL

a) MF-2G

The MF-2G Fluxgate Magnetometer has the same electronics and specifications as the MF-2, but the sensor is detached and enclosed in a small cylindrical tube which permits it to be oriented and tilted in any desired direction. A 25 foot cable connects the sensor to the instrument housing. This version is particularly suitable for the study of the magnetic properties of rocks, and the measurement of magnetic field components of any orientation, etc.

b) MF-2GS

The MF-2GS Magnetometer again has the same electronics and specifications as the MF-2 but has two sensors, the enclosed self-levelling sensor of the MF-2 as well as the detached geoprobe of the MF-2G, either one of which can be employed at any one time. Thus, this instrument can be employed as the standard MF-2 as well as for vertical gradient measurements, and for the determination of the magnetic properties of rocks, etc.
SPECIFICATIONS OF
FLUXGATE MAGNETOMETER
MODEL MF-2

RANGES

Standard:
- Plus or minus
 - 1,000 gammas f.sc.
 - 3,000 gammas f.sc.
 - 10,000 gammas f.sc.
 - 30,000 gammas f.sc.
 - 100,000 gammas f.sc.

Optional:
- 100 gammas f.sc.
- 300 gammas f.sc.

SENSITIVITY

- 20 gammas/div.
- 50 gammas/div.
- 200 gammas/div.
- 500 gammas/div.
- 2000 gammas/div.

Meter:
- Taut-band suspension
 - 100 gamma scale 2.1" long — 50 div.
 - 300 gamma scale 1.9" long — 60 div.

Accuracy:
- 1000 to 10,000 gamma ranges ±0.5% of full scale.

Operating Temperature:
- -40°C to +40°C
- -40°F to +100°F

Temperature Coefficient:
- Less than 1 gamma per °C (¼ gamma/°F)

Noise Level:
- Less than 1 gamma P-P

Bucking Adjustments:
- -20,000 to +80,000 gammas
 - 9 steps of 10,000 gammas plus fine control of 0 - 10,000 gammas by ten turn potentiometer. Reversible for southern hemisphere.

Recording Output:
- Optional.

Electrical Response:
- D.C. to 0.3 cps (3db down) on 1000 gamma range with meter in circuit. D.C. to 20 cps with meter network shorted for recording purposes.

Connector:
- Cannon KO2-16-10SN
 - for plug Cannon KO3-16-10-PN and cover KO6-16-¾.

Batteries:
- Internal 3 x 6V-1 amp/hr. Sealed Lead Acid rechargeable Centralab GC 6101; recharge time 8 Hrs.

Consumption:
- 60 milliamperes — GC6101 batteries are rated for 16 hours continuous use.

Dimensions:
- 6½ " x 2½ " x 10" Instrument.
 - 161 mm x 71 mm x 254 mm

Weights:
- 5 lb. 8 oz. — 2.5 kg.

Battery Charger:
- 6" x 2½ " x 2½ "
 - 155 mm x 64 mm x 64 mm
 - 110V - 220V 50/60 Hz supply or 28 - 42V D.C. supply
 - Automatic charge rate and cutoff preset for Centralab GC6101 batteries.