REPORT ON THE WHITE-EVE PROPERTY
WATSON LAKE MINING DISTRICT
KETZA RIVER AREA, YUKON TERRITORY

LOCATION
N.T.S.: 105F/8, 9
LATITUDE: 61° 29' to 61° 37'N.
LONGITUDE: 132° 19' to 132° 27'W.

CLAIMS
EVE 1 - 138; WHITE 1 - 123; PS 1 - 12; WHYTE 1 - 24

FOR
MOUNTAIN PROVINCE MINING INC.
108 - 525 SEYMOUR STREET
VANCOUVER, BRITISH COLUMBIA V6B 3H7

PREPARED BY
PETER A. CHRISTOPHER PH.D., P.ENG.
PETER CHRISTOPHER & ASSOCIATES INC.
3707 WEST 34TH AVENUE
VANCOUVER, BRITISH COLUMBIA V6N 2K9

FEBRUARY 8, 1988
TABLE OF CONTENTS

SUMMARY 1
INTRODUCTION 1
LOCATION AND ACCESS 1
PROPERTY DEFINITION 1
HISTORY 2
GEOLOGY 3
MINERALIZATION 4
CONCLUSIONS AND RECOMMENDATIONS 7
COST ESTIMATES 7
BIBLIOGRAPHY 10
CERTIFICATE 11
APPENDIX A. CERTIFICATES OF ANALYSES
CONSENT LETTER

LIST OF TABLES

| TABLE 1. PERTINENT CLAIM DATA | 2 |
| TABLE 2. SUMMARY OF ASSAYS | 6 |

LIST OF ILLUSTRATIONS

FIGURE 1: LOCATION MAP	1
FIGURE 2: CLAIM MAP	1
FIGURE 3: COMPILATION MAPY	3
FIGURE 4: GENERALIZED STRATIGRAPHIC SECTION	3
FIGURE 5: EAST, WEST, & LAKE ZONES - SECTION	3
FIGURE 6: NORTH ZONE SECTION	3
SUMMARY

The White-Eve Property of Mountain Province Mining Inc., consisting of the White 1 - 123, Eve 1 - 138, PS 1 - 12 and Whyte 1 - 24 claims totalling 297 claims covers over 15000 acres in the Ketza River Area, Watson Lake Mining District, Yukon Territory. The property is adjacent to the Ketza River gold property which is presently being prepared for production by Canamax Resources Inc. Road access exists to the Ketza Mine but present exploration of the White-Eve Property requires helicopter support.

The White-Eve property is underlain by a succession of Precambrian to Devonian carbonates and clastics and an overlying allochthonous package of Devonian-Mississippian clastics, volcanics and associated pyroclastics. Syenite, carbonatite and mafic dyke rocks intrude the sedimentary and volcanic rocks. Northwesterly and northeasterly trending normal faults displace lithologies by up to several hundred meters. The property was acquired by Mountain Province Mining Inc. to test extensions of the favourable geological setting that hosts economic gold deposits on Canamax's Ketza River gold property.

The 1987 field program (Verley, 1988) was successful in locating the 'West Zone', 'Lake Zone' and 'East Zone' gold prospects with similar settings to gold mineralization being developed for production on the adjacent Ketza River Property. The writer obtained values of 0.913 oz Au/ton for a grab sample and 0.06 oz Au/ton for a 3.65 m chip sample from the main 'East Zone' showing. The program also confirmed a Cyprus Anvil Mining Corporation 1976 lead, zinc and silver anomaly associated with a ferricrete kill zone on the Eve claims and confirmed the association of niobium and rare earths with syenite and carbonatite in the southwest portion of the White claims.

The writer agrees with the success contingent, staged exploration program recommended by Verley (1988) with a Stage 1 program of grid geochemical sampling, magnetics, electromagnetics, geological mapping and trenching of mineralized zones to locate specific Stage 2 drill site. The Stage I program is estimated to cost $140,000. Contingent on the results of the Stage 1 program, a Stage 2 program of further trenching, induced polarization surveying, and 5000 feet of diamond drilling is recommended and estimated to cost $360,000 Canadian. A Stage 3 diamond drilling program of 10,000 feet is contingent on the location of mineralized zones that warrant further definition.
INTRODUCTION

The White-Eve Property of Mountain Province Mining Inc. covering over 15000 acres is situated in the Ketza River gold camp, Watson Lake Mining District, Yukon Territory. The writer was retained by the management of Mountain Province Mining Inc. to examine the geological setting and location of the White-Eve Property, review and check company reports on the property and recommend a staged exploration program for further testing, if warranted. The writer examined the property on September 9th and 10th, 1987 with Carl G. Verley, consulting geologist for Mountain Province Mining Inc. The writer has mainly agreed with the recommendations and proposed budget in an assessment report prepared by Carl G. Verley, B.Sc., geologist (Verley, 1988). Five samples were collected by the writer to check Mr. Verley's sample results and his geological interpretations were reviewed in the field.

This report reviews the geological setting of the White-Eve Property and outlines a staged program for further evaluation of the mineral potential of the property.

LOCATION AND ACCESS (Figures 1 & 2)

The White-Eve Property is situated about 45 kilometers south of Ross River in the Watson Lake Mining District, Yukon Territory. The property covers part of map-sheets 105F/8 and 9 with the area bounded by geographic coordinates 61° 29' to 61° 31' N. latitude and 132° 19' to 132° 27' W. longitude.

Present access to the property is via helicopter from Ross River. Roads on the Canamax's Ketza River gold property pass within 2 kilometers of the southern claim boundary and 7 kilometers of the northern claim boundary.

The property is situated in the Pelly Mountains (St Cyr Range) with elevations ranging from just under 1200 meters to over 2100 meters a.s.l. North facing slopes are steep and rugged but yield to grass covered alpine plateaus. Valleys are broad with meadows dispersed between brush and forest cover.

PROPERTY DEFINITION (FIGURE 2)

The White-Eve Property of Mountain Province Mining Inc., consisting of the White 1 to 123, Eve 1 to 138, PS 1 to 12, and Whyte 1 to 24 claims totalling 297 claims, covers a maximum possible area of 6207 ha. (15338 acres) in the Watson Lake Mining Division, Yukon Territory. The claim area is reduced from the maximum possible area by overlap of adjacent claims or less than maximum possible post spacing. The writer examined posts for the White 37 to 40 and Eve 69 to 72 claim which confirmed the claim locations. A number of additional post locations were confirmed by Verley (1988) during the 1987 field program. Claim locations are shown in Figure 2 and pertinent claim data is summarized in Table 1.
Table 1. Pertinent claim data on the White-Eve Property.

<table>
<thead>
<tr>
<th>Claims</th>
<th>Grant Numbers</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVE 1 - 138</td>
<td>YA99622-YA99759</td>
<td>December 22/1988*</td>
</tr>
<tr>
<td>WHITE 1 - 123</td>
<td>YA99896-YB00019</td>
<td>March 21/1990*</td>
</tr>
<tr>
<td>PS 1 - 12</td>
<td>YB00978-YB00989</td>
<td>August 19/1988</td>
</tr>
<tr>
<td>WHYTE 1 - 18</td>
<td>YB11518-YB11535</td>
<td>January 4/1989</td>
</tr>
<tr>
<td>WHYTE 19 - 24</td>
<td>YB10202-YB10207</td>
<td>December 3/1989</td>
</tr>
</tbody>
</table>

TOTAL CLAIMS 297
A full size claim = 51.65 acres (20.9 ha.)

*Pending acceptance of assessment work.

HISTORY

Exploration in the Ketza River area was initiated in the late 1940's by prospectors working for Hudson Bay Mining and Smelting. Exploration work in the mid-1950's by Conwest Exploration Co. Ltd. resulted in the discovery of auriferous lenses of massive pyrrhotite-arsenopyrite mineralization at the Woodcock showing. A total of 75 drill holes by Conwest Exploration Co. Ltd. between 1955 and 1961 outlined 75,000 tons of sulphide reserves grading 0.35 ounces Au/ton. Contemporaneous with Conwest's discovery, other groups located silver-lead veins in the area with exploration resulting in the definition of probable and possible reserves at the Stump Mine of 40,000 tons grading 10.3 oz/ton Ag and 8.4% Pb. At the Ketzakey prospect probable and possible reserves of 11,800 tons grading 15.9 oz/ton Ag and 12.1% Pb were defined (Verley, 1988).

Sporadic exploration followed the initial discoveries until the Woodstock gold prospect and surrounding ground was optioned from Ketza River Mines Ltd, a wholly owned subsidiary of Conwest Exploration Co. Ltd., to Pacific Trans-Ocean Resources Ltd. In 1984, Pacific Trans-Ocean drilled seven holes in the Woodstock showing before joint venturing development with Canamax Resources Inc. At about the same time, Iona Industries Ltd. consolidated most of the silver properties and optioned the package to Canamax Resources Inc. in 1985.

As operator of the joint venture on the Ketza River Project, Canamax Resources Inc. recently reported mineable proven and probable oxide reserves of 506,900 tons grading 0.466 oz Au/ton with potential reserves of 108,000 tons of possible oxide ore grading 0.37 oz Au/ton and 619,000 tons of possible sulphide ore grading 0.22 oz Au/ton (Hodgson and Toohey, 1988). Canamax expects to start milling operations at the Ketza River Project by mid-1988.

In December 1986, Mountain Province Mining Inc. started acquisition of a large package of claims to the west of the Ketza River Project. The objective was to cover favourable structural and geological trends extending westerly from the mineralized zones. The
latest staking was in December 1987 when the Whyte claims were added. Amerlin Exploration Services Ltd. was retained to conduct the initial exploration of the claim block. The 1987 field program consisted of preliminary geological mapping, prospecting, and limited talus fines, contour soil, and stream sediment sampling at a reported cost of $82,833.59 (Verley, 1988). The exploration program was successful in locating several areas of gold mineralization in Lower Cambrian carbonates with a 'selected grab' samples by Verley assaying up to 1.220 oz Au/ton.

In September 1987, Peter Christopher & Associates Inc. was retained to evaluate the Amerlin's program and prepare an engineering report on the property. The writer confirmed the property location, sampled showing and reviewed the geological setting of the property on September 9th and 10th, 1987 with Mr. C. Verley of Amerlin Exploration Services Ltd.

GEOLOGY (Figures 3 to 6)

The White-Eve Property is situated in the Pelly-Cassiar platform, a terrane consisting of a sequence of sedimentary rocks ranging in age from Precambrian (?) to Lower Devonian and overlain by allochthonous sedimentary, volcanic and pyroclastic rocks of Upper Devonian to Mississippian age. The property lies within the Ketza Uplift, a broad domal feature related to an inferred but unexposed Mid-Cretaceous granitic intrusion. Rare syenitic to carbonatitic bodies of Mississippian age intrude the sequence near the Ketza River.

Formations in the Ketza River area were deformed by an arc-continent collision event in Mesozoic times, and by mid-Cretaceous intrusions of intermediate composition (Templeman-Kluit, 1977; 1979) with right lateral, Late Cretaceous and Early Tertiary strike-slip movement of at least 450 km along the Tintina Fault documented by Gabrielse (1985). Thrust sheets and domal uplifts resulted from the past deformation. Steep northwesterly and northeasterly trending faults have ruptured the domal structure. Movement on thrust faults occurred during Mesozoic time with at least part of the movement on the steep northeasterly and northwestly faults post thrusting. The McConnell Thrust, Clouthier Thrust and Porcupine Thrust are some of the larger thrusts that dominate the framework of the Ketza River Area. Mineralization on the Ketza River Property of Canamax and Pacific Trans-Ocean is localized along a steep east-trending fault called the O80 fault. The O80 structure projects across the White Eve Property.

The stratigraphy of the White-Eve Property is summarized in Figure 4, a generalized stratigraphic section modified after Templeman-Kluit (1977). A succession of Precambrian to Lower Cambrian interbedded phyllite and quartzite is exposed in the core of Ketza Uplift on the White claims. Thin-bedded phyllitic rocks are dark grey to greenish grey and brownish weathering. Thin to medium-bedded quartzites are mainly grey to brownish. The interbedded phyllite and quartzite units may be separated unconformably from the Lower Cambrian.

Verley (1988) has subdivided the Lower Cambrian into three units: a basal (1C1) consists of 50 meters of platey, grey weathering, dark grey, laminated limestone; unit 1C2 unit of 50 meters of medium grey,
Mvo: Intermediate and felsic volcanics and associated pyroclastics.

uDMs: Black laminated shale

FAULT (?)

SDd: Orange weathering dolostone

Sq: Grey, massive quartzite

uEo1: Yellowish-orange weathering, slate and thin interbedded limestone. Contains volcanics near top.

uEo1: Predominantly limestone with argillaceous and shale intervals near top. Contains archaeocyathids. Hosts gold mineralization at the west zone, and lead, silver, gold mineralization at the lake zone.

IE2: Massive to laminated mudstone or phyllite

IE1: Black laminated limestone hosts gold mineralization at the east zone.

UNCONFORMITY (?)

PIEsq: Interbedded phyllite and quartzite.

(Modified after Templeman-Kluit et al., 1975)
WEST ZONE (Prospects)

LOOKING NORTHWEST

UPPER CAMBRIAN - ORDOVICIAN

\[\text{IC}_{\text{LS}} \] Thin-beded and interbedded slate and limestone

\[\text{IC}_{\text{L}} \] Thick-beded, fossiliferous limestone

\[\text{IC}_{\text{M}} \] Massive to laminated mudstone or phyllite

\[\text{IC}_{\text{B}} \] Black laminated limestone

\[\text{PK}_{\text{B}} \] Interbedded quartzite and phyllite

LOWER CAMBRIAN

LOOKING NORTHWEST

FAULT

MINERALIZED ZONE

MOUNTAIN PROVINCE MINING INC.

EVE, PS, WHITE & WHYTE CLAIMS

EAST, WEST & LAKE ZONES

STRUCTURAL CROSS-SECTION

N.T.S. 105-8,9 KETZA RIVER, YUKON

0 100 200 400 METRES

P.A. CHRISTOPHER & ASSOCIATES LTD.

SCALE AS SHOWN FEB. 1988 FIGURE 5
massive to laminated, calcareous mudstone or phyllite with locally abundant 1 to 3 cm pyrite porphyroblasts; and unit 1C3 in excess of 400 meters of thick to thin bedded, creamy to orange weathering limestone. Gold mineralization occurs in the basal member of the Lower Cambrian at the 'East Zone' and in the upper member at the 'Lake' and 'West' zones.

Upper Cambrian to Ordovician (uCOsl) consisting of phyllite, chloritic phyllite, calcareous phyllite and argillaceous limestone with local volcanic flows, tuff and agglomerate, disconformably overlie the Lower Cambrian. The package is generally thin bedded, recessive weathering and forms yellow-orange talus slopes.

The uCOsl unit is conformably overlain by medium grey, blocky weathering, thick-bedded, fine grained Silurian quartzite (Sq). The quartzite was estimated to be 25 meters thick in exposures on the Eve claims.

Silurian quartzites grade upward into arenaceous dolostones and in turn grade into relatively clean dolostones (SDD₁). The unit is Silurian to Lower Devonian. White quartz stringers, locally containing barite and minor galena (2-4%) are common in exposures of this unit on the Eve claims.

Upper Devonian to Mississippian dark grey to black, laminated, brownish weathering siltstone and fine mudstone (uDMs) are in fault contact with, and probably allochthonous to the underlying sequence. Outcroppings of the unit on the Eve claims are in excess of 200 meters.

Mississippian volcanics (Mva) of intermediate and felsic compositions form the majority of the exposures on the northern Eve claims and occurs as local outcroppings on the southwestern White claims. The unit is generally brownish to greenish but prominent gossans form where the unit contains disseminated pyrite. A multi element (Pb, Zn, Ag, Au, As) geochemical anomaly occurs at a faulted contact between unit Mva and unit uDMs on the Eve claims.

Syenite, carbonatite and mafic dyke rocks of Mississipian age occur on the property. A syenite batholith underlies the southwest part of the White claims. The syenite zones to fenitized contact area which contains possible carbonatite bodies. Mafic dykes are common on the property with their orientation generally subparallel to major faults.

MINERALIZATION

Oxide and sulphide replacements in Lower Cambrian account for most of the reserves on the adjacent Ketza River Property with replacement manto and chimney shaped zones near the intersections of northeasterly and northwesterly trending faults. The replacement deposits contain gold and are rich in arsenopyrite as well as pyrrhotite and pyrite. Fissure vein deposits in Late Proterozoic argillite contain galena, sphalerite, quartz, and siderite + pyrite, pyrrhotite, arsenopyrite,
chalcopyrite, and tetrahedrite. The Ketza River Property, a joint venture between Canamax Resources Inc. and Pacific Trans-Ocean Resources Ltd., has reported reserves (Hodgson and Toohey, 1988) of:

<table>
<thead>
<tr>
<th>Type</th>
<th>Tonnage</th>
<th>Au/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineable proven & probable oxide:</td>
<td>506,900</td>
<td>0.446</td>
</tr>
<tr>
<td>Possible oxide:</td>
<td>108,000</td>
<td>0.37</td>
</tr>
<tr>
<td>Possible sulphide:</td>
<td>619,000</td>
<td>0.22</td>
</tr>
</tbody>
</table>

The main exploration target on the White-Eve Property is replacement type gold deposits similar to those on the Ketza River Property. The 1987 field program (Verley, 1988) located three new gold prospects called the 'East Zone', 'Lake Zone', and 'West Zone'. The gold prospects are hosted by similar Lower Cambrian strata to the units which host gold deposits on the adjacent Ketza River Property. The prospects occur near projections of strong northwest and easterly trending faults with the geological settings summarized in Figures 3 through 5.

East Zone

At the East Zone gold occurs in the basal member (1C1) of the Lower Cambrian with irregular veins of iron and manganese-rich carbonate containing pyrite and arsenopyrite cutting thin-bedded, folded and faulted, black limestone. A selected sample of heavily mineralized material by Verley (1988) assayed 1.220 oz Au/ton (VKR-100) with chips of mineralized talus assaying 0.050 oz Au/ton (7638) and 0.053 oz Au/ton (7639). A selected sample, by the writer, containing 30% pyrite and arsenopyrite assayed 0.913 oz Au/ton with a 3.65 meter chip sample from a shallow hand trench constructed across the showing by the writer, assaying 0.060 oz Au/ton.

West Zone

At the west zone, mineralization is situated in the upper (1C3) member of the Lower Cambrian with cobbles and boulders of limonitic material found in a talus slide (Verley, 1988). Grab samples by Verley (1988) of iron-manganese limonite (VKR-272) analyzed 900 ppb Au, 77.9 ppm Ag, 19239 ppm As and 14121 ppm Cu and opaline limonite (VKR-273) analyzed 2010 ppb Au, 35 ppm Ag, 18369 ppm As and 1764 ppm Pb.

Lake Zone

The Lake Zone occurs in a dolomitized area at the base of the upper member (1C3) of the Lower Cambrian. A strong soil geochemical anomaly occurs across 150 meters of line with seven consecutive samples having values between 5 and 29 ppb gold and 297 and 3042 ppm arsenic. A grab samples by Verley (1988) of galena bearing dolostone rubble assayed 3.12% Pb, and 2.52 oz Ag/ton (#7640) and a sample of limonitic dolostone (VKR-246) analyzed 800 ppb Au and 2630 As.

North Zone

The northern (Eve) claims were acquired to evaluate a lead and zinc anomaly obtained by Cyprus Anvil Mining Corporation on the Eros
1-8 claim in 1976 (Dean, 1977) at the faulted contact between Upper Devonian-Mississippian shales and Mississippian volcanics. A ferricrete and partial kill zone approximately 140 by 450 meters is associated with a 'strong, flat-lying conductor' (electromagnetic) and geochemical anomaly obtained by Cyprus. Soil samples collected by Verley (1988) confirmed the Cyprus lead (>400 to 1439 ppm: 200 x 400 m) and zinc (>1000 to 14201 ppm: 200 x 400 m) anomaly and indicated anomalous gold (to 265 ppb), silver (to 15.7 ppm) and arsenic (to 622 ppm) values. Cyprus apparently drilled one short hole into the ferricrete zone, down slope (south) of the subcrop of the shale-volcanic contact and projected fault trace. Verley (1988) believes that, "mineralization responsible for the soil anomaly is controlled by either the shale-volcanic contact or the fault zone.." He recommends a drill hole to test for structurally controlled mineralization and the writer agrees with Mr. Verley's interpretation and recommendation.

Niobium, Rare Earth Elements

The southwest corner of the White claims was previously held as a uranium property by the Ukon Joint Venture (Chevron Canada Limited and Kerr-Addison Mines Limited). Sampling indicated the presence of niobium and rare earth elements in skarn developed at the contact of Mississippian syenite and Silurian limestone. Selected grab samples (Archer et al., 1977, 1978, 1980) of radioactive material assayed up to 5.5% total rare earths and 2.15% niobium. The rare earth elements are enriched in zircon-rich dykes associated with the syenite and small carbomatte plugs. Sample VKR-053 by Verley (1988) contained 1266 ppm niobium and 469 ppm lanthanum and confirmed the presence of niobium and rare earts with the intrusive suite. Further prospecting is required to assess the niobium and rare earth potential of the property.

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>TYPE</th>
<th>WIDTH</th>
<th>SAMPLER</th>
<th>AU OZ/T.</th>
<th>AG OZ/T.</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0401</td>
<td>SELECT</td>
<td></td>
<td>CHRISTOPHER</td>
<td>0.913</td>
<td>0.02</td>
<td>@ VKR-100</td>
</tr>
<tr>
<td>0402</td>
<td>CHIP</td>
<td>3.65 m</td>
<td>"</td>
<td>0.060</td>
<td>0.01</td>
<td>"</td>
</tr>
<tr>
<td>0403</td>
<td>CHIP</td>
<td>1.83 m</td>
<td>"</td>
<td>0.003</td>
<td>0.01</td>
<td>25M SO. VKR100</td>
</tr>
<tr>
<td>VKR-100</td>
<td>SELECT</td>
<td></td>
<td>VERLEY,1988</td>
<td>1.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7638</td>
<td>GRAB</td>
<td></td>
<td>"</td>
<td>0.050</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>7639</td>
<td>GRAB</td>
<td></td>
<td>"</td>
<td>0.053</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>VKR-272</td>
<td>GRAB</td>
<td></td>
<td>VERLEY,1988</td>
<td>900 PPB</td>
<td>77.9 PPM</td>
<td>UNIT 1C3</td>
</tr>
<tr>
<td>VKR-273</td>
<td>GRAB</td>
<td></td>
<td>"</td>
<td>2010PPB</td>
<td>35 PPM</td>
<td>UNIT 1C3</td>
</tr>
<tr>
<td>7640</td>
<td>GRAB</td>
<td></td>
<td>VERLEY,1988</td>
<td>0.001</td>
<td>2.52</td>
<td>3.12% Pb</td>
</tr>
<tr>
<td>VKR-246</td>
<td>GRAB</td>
<td></td>
<td>"</td>
<td>800 PPB</td>
<td>36.2 PPM</td>
<td>1.21% Pb</td>
</tr>
<tr>
<td>0404</td>
<td>CHIP</td>
<td>1.22 m</td>
<td>CHRISTOPHER</td>
<td>0.001</td>
<td>0.02</td>
<td>EVE CLAIM</td>
</tr>
<tr>
<td>0405</td>
<td>CHIPS OF BOULDER</td>
<td>"</td>
<td>0.001</td>
<td>0.02</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>VKR-021</td>
<td>FERRICRETE</td>
<td>"</td>
<td>VERLEY</td>
<td>6107 PPM</td>
<td>7194</td>
<td>RUBBLE</td>
</tr>
<tr>
<td>VKR-022</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS AND RECOMMENDATIONS

The White-Eve Property of Mountain Province Mining Inc. covers a large area of a favourable geological and structural setting for gold prospecting. The 1987 field program was successful in locating three new gold prospects with similar settings to gold mineralization being developed for production on the adjacent Ketza River Property. The program also confirmed a Cyprus Anvil Mining Corporation 1976 lead, zinc and silver anomaly associated with a ferricrete kill zone on the Eve claims and confirmed the association of niobium and rare earths with syenite and carbonatite in the southwest portion of the White claims.

The writer agrees with the success contingent, staged exploration program recommended by Verley (1988) with a Stage 1 program of grid geochemical sampling, magnetics, electromagnetics, geological mapping and trenching of mineralized zones to locate specific Stage 2 drill site. The Stage 1 program is estimated to cost $140,000. Contingent on the results of the Stage 1 program, a Stage 2 program of further trenching, induced polarization surveying, and 5000 feet of diamond drilling is recommended and estimated to cost $360,000 Canadian. A Stage 3 diamond drilling program of 10,000 feet is contingent on the location of mineralized zones that warrant further definition.

Cost estimates for the success contingent staged exploration program follow:

COST ESTIMATES

STAGE I: GRID GEOLOGICAL, GEOCHEMICAL, GEOPHYSICAL, TRENCHING

Salaries:
- Project manager, 55 days @ $350/day...$19,250
- Geologist 45 days @ $275/day...........12,375
- Field assistants, 40 days, 4 @ $150/d. 24,000
- Cook 40 days @ $150/day............... 6,000.......$ 61,625

Assay and Analytical Costs:
- Geochem:
 - Soils - 1500 samples:
 - Au + 30 elem. ICP @ $11/sample.......16,500
 - Rocks - 50 samples:
 - Au + 30 elem. ICP @ $13.75/sample.....688
- Assay: 30 @ $20.00/sample...........600........ 17,788

Geophysics:
- 10 days @ $1,000/day................. 10,000
- Mobilization.......................... 2,500....... 12,500
Field Expense:
- Airfreight: 2,500
- Equipment: 5,000
- Food: 5,500
- Fuel: 2,500
- Lodging: 675
- Travel: 8,000
- Truck, 45 days @ $100/day: 4,500

Total: 28,675

Helicopter support:
- Bell 206, 15 hours @ $625/hr: 9,375

Subtotal: $129,963

Contingency: 10,037

Total Estimated Cost Phase I: $140,000

STAGE II: GEOCHEMICAL, GEOPHYSICAL, TRENCHING, DRILLING (Contingent)

Salaries:
- Project manager, 65 days @ $350/d: $22,750
- Geologist, 75 days @ $275/day: 20,625
- Field Assist. 2 for 55 days @ $150/day ea: 16,500
- Cook, 55 days @ $150/day: 8,250

Total: $68,125

Drilling:
- Diamond drilling, 5000 ft @ $27/ft: 135,000

Assay And Analytical Costs:
- Soils - 600 samples (follow-up)
 - Au + 30 elem. ICP @ $11/sample: 6,600
- Rocks - 50 samples:
 - Au + 30 elem. ICP @ $13.75/sample: 688
- Assay: 75 samples:
 - Au, Ag, Pb, Zn @ $20/sample: 1,500

Total: 8,788

Geophysics:
- 15 days @ $1,000/day: 15,000
- Demob: 2,500
Total: 17,500

Trenching:
- 10 days @ $400/day: 4,000
- Explosives: 2,000
Total: 6,000

Field Expense:
- Airfreight: 2,000.00
- Equipment: 25,000.00
- Food: 8,000.00
- Fuel: 4,000.00
- Lodging: 1,000.00
- Travel: 4,500.00
- Truck, 45 days @ $100/day: 4,500.00

Total: 49,100
Helicopter support:
Bell 206, 70 hours @ $625/hr................................. 43,750

Report Preparation:
Drafting... 6,000
Reproduction... 1,200
Word processing... 350.................. 7,550

Subtotal.. $335,813
Contingency... 24,187

Total Estimated Cost Phase II......................... $360,000

STAGE III: DRILLING (Contingent)

10,000 feet of diamond drilling for detailed evaluation of mineralization located in Phases I and II. Including road building.

Total Estimated all in cost of Phase III.............. $750,000

TOTAL ESTIMATED COST OF PHASE I, II AND III......... $1,250,000

Peter Christopher & Associates Inc.

Peter Christopher & Associates Inc.

February 8, 1988

CERTIFICATE

I, Peter A. Christopher, with business address at 3707 West 34th Avenue, Vancouver, British Columbia, do hereby certify that:

1) I am a consulting geological engineer registered with the Association of Professional Engineers of British Columbia since 1976.

2) I am a Fellow of the Geological Association of Canada and a member of the Society of Economic Geologists.

3) I hold a B.Sc. (1966) from the State University of New York at Fredonia, a M.A. (1968) from Dartmouth College and a Ph.D. (1973) from the University of British Columbia.

4) I have been practising my profession as a Geologist for over 20 years.

5) I have no direct or indirect interest, nor do I expect to receive any interest directly or indirectly in the property or securities of Mountain Province Mining Inc.

6) I have based this report on previous exploration experience in the Ketza River Area, a review of government and company reports listed in the bibliography, and a field examination conducted by me on September 9th and 10th, 1987.

7) I consent to the use of this report by Mountain Province Mining Inc. for any Prospectus, Filing Statement, Statement of Material Facts, or support document.

Peter Christopher & Associates Inc.

[Signature]

February 8, 1988
APPENDIX

CERTIFICATES OF ANALYSIS
Assay and Analytical Data

From ACME ANALYTICAL LABORATORIES LTD. 652 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

To AMERLIN EXPLORATION PROJECT-87004

Acme files # 87-2604, 87-3058, 87-4312 and 87-4312A

| Samples | Au | Ag | Pb | Au | Ag | As | Mn | Fe | Cu | Pb | Zn | Cd | Ba | Mo | Sb | Bi | W | U | Th | Sr | Ni | Co | V | La | Cr | B | Ca | Na | K | Al | Mg |
|---------|
| K 0401 | 0.113 | 0.02 | 0.02 | 1.2 | 6154 | 9452 | 32.23 | 70 | 21 | 60 | 1 | 2 | 3 | 2 | 2 | 1 | 5 | 4 | 145 | 5 | 12 | 9 | 2 | 1 | 2 | 7.65 | 0.01 | 0.01 | 1.18 | 1.08 |
| K 0402 | 0.06 | 0.01 | 0.02 | 0.2 | 302 | 12922 | 37 | 23 | 15 | 45 | 2 | 2 | 3 | 2 | 1 | 5 | 4 | 117 | 4 | 7 | 5 | 2 | 1 | 2 | 6.38 | 0.01 | 0.01 | 0.34 | 1.12 |
| K 0403 | 0.003 | 0.01 | 0.02 | 0.6 | 75 | 13062 | 34.1 | 1359 | 17 | 67 | 2 | 2 | 3 | 2 | 1 | 5 | 5 | 131 | 30 | 17 | 5 | 6 | 1 | 2 | 6.01 | 0.01 | 0.01 | 0.13 | 0.57 |
| K 0404 | 0.001 | 0.02 | 0.02 | 0.4 | 40 | 210 | 1.28 | 20 | 23 | 161 | 1 | 96 | 31 | 4 | 3 | 1 | 5 | 1 | 5 | 7 | 2 | 121 | 2 | 4 | 5 | 0.1 | 0.01 | 0.06 | 0.13 | 0.02 |
| K 0405 | 0.001 | 0.02 | 0.02 | 0.9 | 61 | 86 | 17.73 | 45 | 52 | 51 | 1 | 10 | 5 | 2 | 2 | 2 | 5 | 3 | 4 | 33 | 57 | 2 | 2 | 1 | 3 | 0.07 | 0.02 | 0.09 | 0.18 | 0.03 |
| K 7638 | 0.05 | 0.01 | 0.03 | 0.2 | 25 | 3328 | 36.32 | 226 | 16 | 47 | 2 | 3 | 2 | 2 | 1 | 5 | 3 | 166 | 6 | 10 | 24 | 2 | 2 | 2 | 7.28 | 0.01 | 0.01 | 1.2 | 0.31 |
| K 7639 | 0.053 | 0.01 | 0.02 | 0.2 | 25 | 5896 | 41.04 | 238 | 20 | 52 | 2 | 2 | 1 | 2 | 5 | 2 | 5 | 4 | 59 | 23 | 15 | 7 | 2 | 1 | 2 | 2.94 | 0.02 | 0.01 | 1.03 | 0.51 |
| K 7640 | 0.001 | 2.52 | 3.12 | 77.6 | 124 | 2723 | 3.4 | 503 | 20068 | 51 | 1 | 3 | 1 | 194 | 3 | 1 | 5 | 1 | 68 | 6 | 3 | 2 | 3 | 1 | 2 | 21.97 | 0.01 | 0.01 | 0.03 | 8.53 |
| VKR-021 | 0.0 | 0.1 | 0.2 | 459 | 33.71 | 34 | 6107 | 15 | 166 | 6 | 2 | 2 | 1 | 5 | 6 | 9 | 6 | 14 | 8 | 8 | 9 | 8 | 0.31 | 0.01 | 0.27 | 0.60 | 0.19 |
| VKR-022 | 0.0 | 0.1 | 0.3 | 30 | 276 | 49.1 | 23 | 37 | 7194 | 12 | 64 | 20 | 2 | 2 | 1 | 5 | 6 | 3 | 26 | 17 | 1 | 10 | 12 | 8 | 0.35 | 0.01 | 0.12 | 0.7 | 0.21 |
| VKR-100 | 1.22 | 35650 | 0.9 | 2417 | 10047 | 41.13 | 178 | 43 | 67 | 2 | 3 | 1 | 2 | 2 | 1 | 22 | 3 | 56 | 6 | 20 | 3 | 2 | 4 | 5 | 2.31 | 0.01 | 0.02 | 1.11 | 0.7 |
| VKR-246 | 0.0 | 0.0 | 36.2 | 2630 | 1067 | 29.76 | 1969 | 12094 | 1870 | 19 | 7 | 4 | 65 | 2 | 1 | 5 | 3 | 18 | 29 | 20 | 4 | 2 | 1 | 2 | 8.99 | 0.01 | 0.03 | 0.07 | 2.85 |
| VKR-272 | 0.0 | 0.0 | 77.9 | 19239 | 835 | 44.06 | 14121 | 151 | 329 | 3 | 70 | 3 | 137 | 10 | 1 | 5 | 5 | 41 | 453 | 244 | 3 | 4 | 1 | 2 | 4.49 | 0.02 | 0.01 | 0.1 | 0.06 |
| VKR-273 | 0.0 | 0.0 | 10.0 | 35 | 18386 | 78 | 14.5 | 163 | 1764 | 27 | 1 | 31 | 1 | 65 | 79 | 1 | 5 | 151 | 2 | 1 | 1 | 3 | 1 | 5 | 3.36 | 0.02 | 0.01 | 0.02 | 0.05 |
| Be | Rb | V | Zr | Nb | Sn | Cs | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Th | U | Au |
| ppm |
| 12 | 125 | 446 | 6375 | 1266 | 2 | 3 | 469 | 443 | 69 | 390 | 451 | 5 | 48 | 12 | 59 | 12 | 42 | 7 | 52 | 7 | 170 | 76 | 2 | 196 | 41 | 1 |