REPORT ON THE
EAGLE CLAIMS
TINTINA SILVER MINES LTD.
YUKON TERRITORY

Vancouver, B. C.,
November 8, 1973

W. G. Hainsworth, P. Eng.,
Consulting Geologist

Received Ottawa
May 14, 1974.
TABLE OF CONTENTS

SUMMARY................................. 1
INTRODUCTION............................ 2
LOCATION AND ACCESSIBILITY........... 2
PROPERTY................................. 2
HISTORY.................................. 3
REGIONAL GEOLOGY........................ 4
LOCAL GEOLOGY............................ 4
MINERAL DEPOSITS......................... 6
PAST DIAMOND DRILLING................... 13
CONCLUSIONS.............................. 15
RECOMMENDATIONS........................ 17
COST ESTIMATES........................... 19
BIBLIOGRAPHY............................. 20
CERTIFICATE............................... 21

MAPS:

Claim Disposition....................... [following pg. 3]
1962 Underground Operation............... [following pg. 4]
Cirque Geology............................ [following pg. 5]
Recommended #1, 2, 3 & 4 Zone Drilling........ [following pg. 19]
Recommended #5 Zone Drilling............... [following pg. 19]
Recommended #6 Zone Drilling............... [following pg. 19]
Recommended #8 Zone Drilling............... [following pg. 19]

IN SEPARATE FOLDER:

Sketch Map of Geology, Vicinity of Tintina Silver Mines
Scale 1" = 500'

Tintina Silver Mines, Map showing Sulphide Zones
Scale 1" = 200'

Tintina Silver Mines, Zones #1, 2, 3, 4 & 9
Scale 1" = 20'

Tintina Silver Mines, Zones #5, 6, 7 & 8
Scale 1" = 20'

Property Location Map

* * * * * * * *
SUMMARY

Tintina Silver Mines Ltd. of Toronto have 70 claims [EAGLE] located in the Watson Lake Mining Division of the Yukon Territory.

The claims are located in the St. Cyr Mountains near the headwaters of the Liard River some 110 miles northwest of Watson Lake.

The claim block is noted for its high grade showings of silver-lead-zinc ore which were located by Conwest prospectors in 1961.

In 1962, Conwest instituted an underground development program encompassing 1831.6 feet of excavation work and some 3,826 feet in drilling both underground and on surface. The underground program failed to confirm the existence at that level of the various target zones.

In 1968, a brief geochemical program was run over the property but no further work has been carried out since then.

The 26 showings are located in metamorphosed sedimentary formations in an area lying to the southwest of the Tintina Fault, a major structure in the Yukon.

Geologically the claim block consists of conformably emplaced limestone and argillite beds which have been disrupted by thrust faulting and folding. A large intrusive body lies to the north along the claim boundary. Numerous small lamprophyre dykes are randomly distributed through the sedimentary formations.

The numerous showings on the claims have not been checked in any but a superficial manner. The writer proposes a diamond drill program designed to fully check out the potentials of the property.
INTRODUCTION

At the request of Mr. W. P. Hammond, P. Eng., a director of Tintina Silver Mines Ltd., the writer has made an evaluation of the potentials of the mining properties of the Company, located at the headwaters of the Liard River in the Watson Lake Mining Division of the Territory of the Yukon. The object of this report was to gather data respecting the economic possibilities of the property and to recommend an exploration program for the coming 1974 season.

The writer was deeply involved with this property in the past. In 1961 and 1962 the property was under the guidance of the Conwest organization who instituted an underground program. From February 1962 until August of the same year the writer was resident geologist during the driving of the adit and the subsequent surface and underground drill campaigns. I have not been on the property since that time.

LOCATION AND ACCESSIBILITY

The property is located in the southeastern section of the Yukon Territory, some 110 miles northwest of Watson Lake and 140 miles slightly north of east from Whitehorse.

The claims are accessible only by aircraft. A fixed wing aircraft can land on Junkers Lake but a swamp vehicle is required to complete the 10½ miles from the lake to the showings. A helicopter can quite easily land within the cirque, where the majority of the showings are located.

The co-ordinates of the claims are longitude 131°10' west and latitude 61°08' north. The property lies within N.T.S. 105-G-3.

PROPERTY

The Tintina Silver Mines claim group consists of 70 located claims in one grouping, which roughly forms a square centred on the main showings. The claims are
located in the Watson Lake Mining Division of the Territory of the Yukon.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant No.</th>
<th>Owner</th>
<th>Anniversary Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle 1</td>
<td>76323 - 76372</td>
<td>Tintina</td>
<td>August 22, 1974</td>
</tr>
<tr>
<td>57 - 58</td>
<td>76379 - 76380</td>
<td>"</td>
<td>August 25, 1974</td>
</tr>
<tr>
<td>66</td>
<td>76414</td>
<td>"</td>
<td>August 25, 1974</td>
</tr>
<tr>
<td>73 - 74</td>
<td>76421 - 76422</td>
<td>"</td>
<td>August 25, 1974</td>
</tr>
<tr>
<td>77 - 78</td>
<td>76425 - 76426</td>
<td>"</td>
<td>August 25, 1974</td>
</tr>
<tr>
<td>81 - 85</td>
<td>76429 - 76433</td>
<td>"</td>
<td>August 25, 1974</td>
</tr>
<tr>
<td>115 - 122</td>
<td>76463 - 76470</td>
<td>"</td>
<td>August 25, 1974</td>
</tr>
</tbody>
</table>

HISTORY

During the summer of 1961 prospectors working for Conwest Explorations uncovered silver-lead-zinc showings in the St. Cyr Range of the Yukon. Some 302 claims were staked in the immediate area and some 130 of them covering the main showings were incorporated into a newly-formed company, the Tintina Silver Mines Ltd.

Mapping, trenching and pack sack drilling was initiated on the showings for the remainder of the summer. The results proved so interesting that a decision was made to go underground utilizing an adit method.

The adit was collared in on January 31, 1962. Following disappointing underground operations all mining and drilling was discontinued as of July 30, 1962. Research mapping by Dr. Moorhouse continued for the remaining summer months.

The claims lay dormant for a period of six years.

In 1968, a consulting firm, at the request of Tintina Silver Mines carried out a geochemical survey over the claims for assessment purposes. The resulting anomalies from the soil and silt sampling campaign confirmed the presence of the known mineralized zones.

Since 1968, there has been no activity on the property.
TINTINA SILVER MINES LTD.
YUKON TERRITORY
CLAIM DISPOSITION
Scale: 2" = 1 Mile
REGIONAL GEOLOGY

The area has been mapped in a reconnaissance manner by the Geological Survey of Canada with the results being published as Map 8-1960, Finlayson Lake Sheet, Yukon Territory.

The area lies to the southwest of the Tintina Fault which is the continuation into the Yukon of the Rocky Mountain Trench. Formations of the area are primarily sediments, identified with the Early Paleozoic era. The stratae have been folded and faulted with the result that the area is quite mountainous. Glaciation has been moderate with normally smooth sloped hillsides and occasional hogsback ridges.

North of the claims area, a large granodiorite plug has been injected into the sedimentary series. Adjacent to the intrusive are highly metamorphosed hornfels. South of this, and within the claims area, are a repetitive series of limestones and argillites of varying alteration.

The general area has been subjected to intense warping and thrusting with a most complex structural pattern emerging.

LOCAL GEOLOGY

The mine area lies within a north facing cirque at an elevation of 5,300 - 5,500 feet. The formations enclosed within this area are sediments of Middle and Lower Cambrian age. In the latter group may be classified the graphitic slates, limestones and argillites. The calcareous slate, or phyllite, is recorded by government geologists as being of the middle Cambrian era. Intrusives within the area consist of lamprophyre and diorite dykes.

A compilation of the sedimentary series as identified by Dr. W. W. Moorhouse is shown in the accompanying chart.
<table>
<thead>
<tr>
<th>Type</th>
<th>Thickness</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youngest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hornfels</td>
<td></td>
<td>Purplish brown to black.</td>
</tr>
<tr>
<td>Limestone</td>
<td>?</td>
<td>Argillaceous, grey, well-bedded, complex folding.</td>
</tr>
<tr>
<td>Argillite</td>
<td>100' - 200'</td>
<td>Black, carbonaceous, thrust fault areas.</td>
</tr>
<tr>
<td>Limestone</td>
<td>30' - 50'</td>
<td>Grey, mottled, absence of yellow weathering.</td>
</tr>
<tr>
<td>Limestone</td>
<td>exceeds 250'</td>
<td>Reef origin, yellow weathering.</td>
</tr>
<tr>
<td>Oldest</td>
<td>exceeds 300'</td>
<td>Brown to purplish brown.</td>
</tr>
</tbody>
</table>

The general trend of the local formations is northwest in compliance with the regional trend. On the surface the formations appear to lie conformably upon one another and to some extent this was borne out underground. The surface contacts show a normal continuity broken by a few faults.

There are several types of dykes within the immediate mineralized area. Most prominent in number and dimension variety are the lamprophyres. These vary in thickness from several inches up to widths exceeding 20 feet. In composition the bulk belong to the micaeous type but identification has been made of altered basaltic varieties. They vary in strike and dip with no pattern emerging.

Vein structures of quartz and carbonate material are locally abundant. They are normally associated with the limestone beds. In only a few minor cases are they mineralized.

The major structure within the claims area is that of a reclining anticlinal fold. The underground workings appear to lie within the central and right limb of an anticline overturned to the north.

The property displays two sets of complimentary slip patterns. One set strikes 010°, whereas the other runs 060° azimuth. Both sets dip steeply to north.
TINTINA SILVER MINES LTD.

YUKON TERRITORY

CIRQUE GEOLOGY

SCALE: 1" = 500'

SYMBOLS

LEGEND

1. Limestone, Recrystallized
2. Argillite, Black
3. Limestone, Argillaceous
4. Larnphophyre
5. Diorite Dike

Fault
Anticlinal Axis
Synclinal Axis
Elevation Contour
west. Shearing tends to parallel the structural trend, that is to the northwest.

Bedding in many instances is obliterated due to schistosity. Where observed, it has shown the beds to be relatively flat. Cross folding and doming are other structural features of the mine area. The latter effect is quite noticeable in the 1, 2 and 3 mineralized zones. Here a relatively flat limestone dome dips away gently under the slates and argillites.

Faulting can be quite severe and in one case - the 5A ore zone - it completely cut off the structure. The so-called "Mineral Fault" at the north end of the cirque is a strong break.

MINERAL DEPOSITS

Within the Tintina Silver Mine claims, silver-lead-zinc mineralization is apparent as vein structures, lenses and, occasionally, disseminations in the limestone and argillaceous limestone beds. The principal sulphide minerals are freibergite, galena and sphalerite with moderate to minor quantities of pyrite and minor amounts of pyrrhotite and chalcopyrite. Gold values are almost non-existent.

Twenty-six instances of mineralization have been noted within the claim group. Of these twenty-six, twenty-one were the original showings of the 1961 Con-west prospecting group. An additional zone, the 5A, was uncovered by the writer underground in 1962, while the remaining four were the discoveries of Dr. Moorhouse in 1962 during his surface geologizing.

The underground adit program of 1962 was principally directed towards picking up the downward extension of the #5, #6 and #8 mineralized bodies.

Surface drilling of the various zones consisted of 18 peck sack holes in 1961 totalling 284 feet and 6 AX-size drill holes in 1962 for 625 feet.

A description of the various zones follows:
Zones 1 and 2:

Six trenches in 1961 exposed heavy amounts of zinc and lead mineralization. Fourteen pack sack holes that year showed mineralization carrying on to irregular depths. In 1962, the writer spaced four diamond drill holes across this and the #3 zone. The results showed the mineralization to be erratic in distribution but running primarily to zinc in content.

The mineralization appears in the upper limestone unit, just west of the contact with the black argillites.

Zone #3:

Three trenches showed silver values averaging 31 oz/t across an average width of 8 feet. The mineralization lies in limestone in contact with a folded shell of later argillite.

Zone #4:

Three trenches gave an average silver grade of 32 oz/t from eight samples. Three pack sack holes showed mineralization at shallow depths. Location of the zone is similar to #3 being close to the argillite contact with the limestone.

Zone #5:

This moon-shaped zone lies completely within the limestones and dips shallowly to the south. Nine samples assayed out at 32 oz/t silver with the width varying from 2 feet at the tapered end of the lens to 10½ feet in the thicker central section. Seven underground holes demonstrated the possibility of an eastern rake to the structure although underground drill values were weaker than surface sampling.

Zone 5A:

Encountered only in the underground workings. The zone some 125 feet in length and varying from 1.5 feet to 4.6 feet in width showed a character varying
from massive, through poorly disseminated to a stringer type mineralization. The silver grade varied according to the structural type, being low grade [5-10 oz/t] in the vein type to high grade [39 oz/t] in the more massive variety.

Zone #5B:

An east-southeast trending shear in the limestones was uncovered by Moorhouse in surface trenching. No sample values are available.

Zone #6:

A mineralized structure lying close to the contact with the argillites in the limestone. Nine samples from the six trenches on this flat structure averaged 69 oz/t silver. Drilling from underground in five holes failed to establish the downdip trend of the mineralization.

Zone #6E:

Discovered by Moorhouse in 1962, the zone, contained within argillaceous limestones, extends over 70 feet in a rough east-west direction. No sampling was carried out.

Zone #7:

Several heavily mineralized quartz veins form this zone. Located in the southern portion of the cirque the veins lie within the limestone close to the slate contact. Samples taken across the two vein structures averaged 54 oz/t silver over a 6" width. One pack sack hole in 1961 followed the mineralization down for a short depth. In contrast, two AX drill holes in 1962 pulled blanks at depth.

Zone #8:

This is the major zone on the property and the main target of the underground workings. It strikes N 40° W and dips very flatly [20°] to the southwest. The lens-like structure extends some 200 feet within the argillaceous limestones unit. It seemingly parallels
the contact but this latter condition is hidden on sur-
face by a talus slope. Sampling of the zone shows an
average grade of 34 oz/t silver.

At the vertical projection depth below the show-
ing the adit has a back of 275 feet.

Underground drilling picked up weak values 150
feet below the showing. Unfortunately no opportunity ex-
isted to trace the values further down dip.

Zone #9:

A short structure located in an argillaceous
limestone close to the Mineral Fault at the north end of
the cirque. Moorhouse extended the 25 foot structure by
an additional 80 feet in 1962. The original zone carried
an average value of 66 oz/t silver in two samples. The
later zone proved to be thinner in width [1.3 feet as op-
posed to 4.0 feet] and grade [8.2 oz Ag].

Zone #10:

A weak mineralization exposure of uncertain habi-
tat [boulder?].

Zone #11:

Spotty mineralization in altered limestone - ar-
gillite contact near a diorite dyke.

Zone #11N:

A 12" quartz vein lying along the folded contact
of the brown argillites with limestone. Some sulphides
are present.

Zone #12:

A series of en echelon lenses of massive sul-
phides with dissemination occurring in the enclosing lime-
stone. The zone is about 2 1/2 feet in width along a strike
length of 22 feet.
Zone #13:

Several trenches have disclosed lens-like structures of massive sulphides within the recrystallized limestone.

Zone #14:

Contact mineralization here in lens form between the limestone and argillites.

Zone #15:

Narrow fracture fillings of zinc and lead in limestone.

It should be noted that Zones 10 - 15 are out of the cirque area and in close proximity to a northwest trending baseline established by Conwest engineers in 1961. The relocation of these showings will likely require some additional ground search. The following showings are located at or on geographical or mountain features within the claims. Their relocation might similarly require a ground search.

Cornice Zone:

Located in talus between 5,900 feet and 6,000 feet elevations on Cornice Ridge. Lenses of massive and streaky mineralization in the limestone have given a sample of 69 oz/t silver across a little better than 2 foot width.

Fall Zone:

Seams of sphalerite occur in a breccia zone within argillaceous limestone. The zone is exposed in the bed of a creek near the Mineral Fault along the East slope. The steep pitch of the slope makes most of the 120 feet length difficult to inspect.

Ridge Zone:

The presence of mineralized float led to trenching in this locale which in turn revealed zinc veinlets cutting fractured argillaceous limestone. The heavy talus prevented the extending of this zone.
Sidehill Zone:

A small sulphide lens was exposed in a trench in the upper limestone beds. A chip sample across the 3 foot exposure yielded 10 oz/t silver and heavy zinc mineralization. Outcroppings showed no extension of the exposure.

West Mountain Zone:

This is a rather prominent showing located in late 1962 by Moorhouse. It is situated westward across the valley from the main area of activity some 2,500 feet south of Ice Lake. The contact of the argillaceous limestone and black argillite have produced a zone some 400 feet in length and up to 100 feet in width which carries low grade silver assays. Moorhouse likens this area to the #8 zone both in type and manner of mineralization.

Quartz Veins at Head of Cirque:

A multiple accumulation of mineralized quartz vein, striking east-west, has been located at the south end of the cirque within the argillite beds. They average 6" in width with unknown strike continuity. In some respects these veins are similar, other than for host rock, to the quartz veins in the #7 zone vicinity.

East Boundary Veins:

Better than a mile east of the adit portal two quartz lens striking roughly east-west have been identified. The lenses contain streaks of mineral throughout and mineral tailings running off from the lenses down the hillside. Uncovered lengths of both lenses are short being in the area of 10 and 19 feet. Variable silver assays resulted from sampling of both veins.

PAST DIAMOND DRILLING

In 1961, pack sack drilling was carried out on the northern showings in the cirque. Eighteen holes totalling 249 feet were drilled.
<table>
<thead>
<tr>
<th>Hole No.</th>
<th>Target</th>
<th>Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zone 1</td>
<td>25.0' of 14.2 oz/t Ag</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>9.0' of 1.7 oz/t Ag</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>10.0' of 18.3 oz/t Ag</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>13.0' of 2.26 oz/t Ag; 13.9% Zn</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>No ledge</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>9.5' of 24.0 oz/t Ag; 13.4% Zn</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>8.6' of 5.9 oz/t Ag; 6.0% Zn</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>1.5' of 10.8 oz/t Ag; 26.3% Zn</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>No ledge</td>
</tr>
<tr>
<td>10</td>
<td>Zone 2</td>
<td>Shallow depth (5'). No intersection.</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>Shallow depth (5'). No intersection.</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>4.0' of 17.4 oz/t Ag; 17.8% Pb; 22% Zn</td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td>22.0' of 12.0 oz/t Ag; 7.7% Pb; 8.2% Zn</td>
</tr>
<tr>
<td>14</td>
<td>"</td>
<td>No intersection</td>
</tr>
<tr>
<td>15</td>
<td>Zone 4</td>
<td>6.0' of 48.1 oz/t Ag; 22.5% Pb; 8.8% Zn</td>
</tr>
<tr>
<td>16</td>
<td>"</td>
<td>No intersection</td>
</tr>
<tr>
<td>17</td>
<td>"</td>
<td>3.3' of 25.0 oz/t Ag; 17.5% Pb; 15.6% Zn</td>
</tr>
<tr>
<td>18</td>
<td>Zone 7</td>
<td>6.5' of 16.0 oz/t Ag; 17.7% Pb; 11.7% Zn</td>
</tr>
</tbody>
</table>

In 1962, surface drilling with a large machine giving AX size core was employed. Six holes totalling 625 feet were put down.

S-1 Zones 1, 2 & 3 Erratic zinc mineralization
S-2 " "
S-3 " "
S-4 " Light mineral
S-5 Zone 7 No intersection
S-6 " No intersection

(Note: Assay results not available on above drilling.)
The 1962 underground drilling followed on the heels of the shutdown of the underground mining operation. It was initiated because the workings failed to locate their initial targets. A total of 3,201 feet in 22 holes was drilled. Not all the results of the underground core assaying are available to the writer.

<table>
<thead>
<tr>
<th>Hole No.</th>
<th>Target</th>
<th>Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1-1</td>
<td>Zone 8</td>
<td>1.5' of 0.28 oz/t Ag; 5.7% Zn</td>
</tr>
<tr>
<td>U1-2</td>
<td>"</td>
<td>7.5' of 1.16 oz/t Ag</td>
</tr>
<tr>
<td>U1-3</td>
<td>"</td>
<td>3.0' of 0.68 oz/t Ag; 7.3% Zn</td>
</tr>
<tr>
<td>U1-4</td>
<td>"</td>
<td>No intersection</td>
</tr>
<tr>
<td>U1-5</td>
<td>"</td>
<td>1.0' of 0.40 oz/t Ag</td>
</tr>
<tr>
<td>U1-6</td>
<td>Zone 5</td>
<td>2.0' of 10.0 oz/t Ag; 12% Pb; 9% Zn</td>
</tr>
<tr>
<td>U1-7</td>
<td>"</td>
<td>No intersection</td>
</tr>
<tr>
<td>U1-8</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>U1-9</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>U1-10</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>U1-11</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>U1-12</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>U1-13</td>
<td>Zone 5A</td>
<td>1.0' of 5.0 oz/t Ag; Heavy Zinc</td>
</tr>
<tr>
<td>U1-14</td>
<td>"</td>
<td>3.0' of 6.7 oz/t Ag; 18.6% Zn</td>
</tr>
<tr>
<td>U1-15</td>
<td>"</td>
<td>No intersection</td>
</tr>
<tr>
<td>U1-16</td>
<td>"</td>
<td>No intersection</td>
</tr>
<tr>
<td>U1-17</td>
<td>Zone 5</td>
<td>9.0' of 21.0 oz/t Ag; 10.9% Zn</td>
</tr>
<tr>
<td>U1-18</td>
<td>Zone 6</td>
<td>No intersection</td>
</tr>
<tr>
<td>U1-19</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>U1-20</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>U1-21</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>U1-22</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>
Of special interest in the original sampling of the mineralized area in 1961. The zones were sampled by reputable engineers within the Conwest organization. The writer did not do any surface sampling.

Summary of Assays taken in 1961

<table>
<thead>
<tr>
<th>Vein</th>
<th>Width</th>
<th>Length</th>
<th># Samples</th>
<th>Ag [oz]</th>
<th>Pb [%]</th>
<th>Zn [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not sampled</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Not sampled</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>6.6</td>
<td>95'</td>
<td>11</td>
<td>36.8</td>
<td>13.4</td>
<td>9.2</td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
<td>25'</td>
<td>8</td>
<td>35.6</td>
<td>17.9</td>
<td>10.3</td>
</tr>
<tr>
<td>5</td>
<td>4.8</td>
<td>75'</td>
<td>9</td>
<td>36.9</td>
<td>15.1</td>
<td>16.0</td>
</tr>
<tr>
<td>6</td>
<td>4.3</td>
<td>70'</td>
<td>9</td>
<td>88.9</td>
<td>24.8</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>50'</td>
<td>11</td>
<td>54.3</td>
<td>20.0</td>
<td>15.8</td>
</tr>
<tr>
<td>8A</td>
<td>6.4</td>
<td>52'</td>
<td>17</td>
<td>35.1</td>
<td>19.9</td>
<td>4.9</td>
</tr>
<tr>
<td>8B</td>
<td>3.7</td>
<td>112'</td>
<td>19</td>
<td>33.0</td>
<td>15.7</td>
<td>10.6</td>
</tr>
<tr>
<td>9</td>
<td>4.0</td>
<td>15'</td>
<td>2</td>
<td>66.0</td>
<td>17.3</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Average: 4.1 [494'] - 46.8 17.6 10.6
CONCLUSIONS

It is my opinion, stated in a private report to the company following cessation of activities at the property in 1962, that insufficient geological information had been obtained prior to underground operations being ordered. What appeared to be relatively simple structure after the first discoveries were made, developed into a complex geological problem when detailed geological and structural mapping were later completed. Many of the mineralized structures have a flatter attitude than originally presumed.

Twenty-six occurrences of mineralization are known to occur on the property in an area of approximately 7000 feet by 2000 feet and over a vertical range of 900 feet. I cannot visualize so much mineralization being confined to within 20 or 30 feet of the surface. Consequently, I believe that there could be a continuation of these mineralized structures to depth.

The #8 zone, the main target of the underground workings, lies some 275 feet above the adit back. Drilling intersected minor mineralization some 150 feet above the back, which could be remnants of the #8 or offshoots from the structure.

The underground workings and the drilling have not proven the absence or presence of the downward extension of the #8 zone. Its remarkably long surface exposure (250') leads one to the belief that there should be a substantial downward extension.

The mineralization on the Tintina ground is primarily associated with two controls. The primary control appears to be a combination of the limestone beds as host rocks and their proximity to the limestone-argillite contact. The majority of the mineralized showings lie close to this contact.

The second control is the Mineral Fault. Although not proven, as yet, to have been instrumental in the localization of the sulphide bodies, it is noted that a number of the showings lie in close proximity to this structure. The #1, 2, 3, 4, 8, 9 and the Fall zones are closely associated with the Mineral Fault. Only the surface expression of this structure has been examined. No sub-surface investigation has been carried out.

The Tintina ground has numerous showings which are associated with minor faulting other than the Mineral Fault. These zones have not been investigated in any but a cursory manner. As examples of this, zones 10 to 15, have only had surface mapping and in a few instances, sampling.
The mountainous slopes have developed heavy talus areas which in many cases have hindered further surface investigation of such zones as the Cornice and the Ridge. In other locations a lack of outcropping prevented further extension of the zones.

Concentration of work in the past has been in the cirque area where initial trenching revealed good grade mineralization. The showings out from the cirque have been given little specific attention other than for geological investigation.

It is my conclusion that based on the number of mineralized showings contained within the claim group, a major diamond drilling program is warranted.
RECOMMENDATIONS

I recommend the following program for the Eagle claims of the Tintina Silver Mines Ltd.:

(1) An intensive diamond drill program.

(2) A trenching program aimed at supplementing drill information and to guide further drilling.

(3) A detailed geological mapping program confined to the immediate showing being investigated.

Diamond Drilling

In the investigation of a property of this type, diamond drilling is usually the first method of exploration and consequently a major drilling program is recommended. Due to the location, short field season and expense of transporting equipment to the site, a concentrated, intensive program is essential. Two drill rigs should be employed entailing 18,000 feet of BQ wireline drilling.

At this stage, it is not possible to allot a precise footage to each mineralized zone, but rather to provide approximate estimates to be guided and modified as the results of each hole become available. The project is designed to be a comprehensive investigation of all the significant mineral occurrences existing on the property. The drilling would be supervised at all times by experienced Professional Engineers.

It is recommended that the distribution of this drilling be made in the following manner:

#8 Zone - One drill should be deployed to carry out approximately 7,000 feet of drilling. This would consist of two tiers of holes along the strike of the structure. At each set-up there would be two holes -- a vertical and an inclined hole. This arrangement cuts the number of drill moves and also supplies faster information concerning the down dip extension. (Refer to sketch map.)

#5 Zone - Previous underground drilling cut spotty values. To supplement this information, it is recommended that tier drilling of vertical holes be applied to this zone. Recommendations are for 1,500 feet in 10 holes. (Refer to sketch map.)
Zone - No information exists as to the dip of this structure. As a consequence it is recommended that drilling first be directed to ascertain the attitude of the zone. Once this has been gained, tier drilling of vertical holes along the strike should be conducted. This would entail some 1,500 feet in 10 holes. (Refer to sketch map.)

1, 2, 3 & 4 Zones - Line drilling of vertical holes at close spacing is recommended for this zone. The lines would progress to the north to penetrate the overlying argillites. 2,500 feet of drilling is recommended. (Refer to sketch map.)

Mineral Fault - This structure is believed to play a major role in the supply and implantation of the mineralized bodies. Its depth situation is unknown. It represents a good "geological bet" for exploration drilling purposes. It is recommended that 5 holes involving some 2,500 feet of drilling be laid out along its strike to probe the structure at depth.

Other Zones - There are numerous other showings that should be investigated by drilling. For some showings possibly only one drill hole will supply the necessary answer. For others, it may take more or results may well dictate an enlarged program. 3,000 feet of drilling should be allocated to the testing of the various showings.

Trenching Program - As stated this is not a major program implementation but an auxiliary program. The object of the program is to open up extensions of known zones for assay and geological purposes. The geological assistants can best carry out this program under supervision of the resident geologist.

Detailed Geological Mapping - This program need only be applied to the immediate areas of the showings. The details it would supply can be incorporated into the information supplied by the drills. This can be the duties of the resident geologist or an assistant can be supplied him for this direct purpose.
COST ESTIMATES [3 month's time]

Diamond Drilling:
18,000 feet @ $14.50/foot
$261,000
[includes camp maintenance, fuel, core-boxes, etc.]

Mobilization and demobilization 24,000

Salary - geologist 4,500

Wages - 3 assistants 8,000

Cobra drill and explosives 750

Assaying 2,500

Management personnel boarding @ $20/day/man 7,200

Engineering and supervision 7,000

Travel Expenses 45,000

Camp equipment, etc. 1,000

Contingency - 10% 36,000

TOTAL $396,950

Respectfully submitted,

W. G. Hainsworth, P. Eng.
Consulting Geologist

Vancouver, B. C., November 8, 1973
TINTINA SILVER MINES LTD.

YUKON TERRITORY

ASSAY PLAN

SCALE 1" = 40 ft. APPROX.

PREPARED FOR
W. G. HAINSWORTH P. Eng. (Con. Geol.)
207 - 470 Granville Van. 2 B.C.

AXTEN Drafting Limited 9 - 11 - 73
TINTINA SILVER MINES LTD.

YUKON TERRITORY

ASSAY PLAN

PREPARED FOR

W. G. HAINSWORTH P. Eng. (Con. Geol.)

207 - 470 Granville Van. 2 B.C.

AXTEN Drafting Limited 9-11-73
BIBLIOGRAPHY

6] Author's personal notes during residency on the property, February to July, 1962
CERTIFICATE

I, WILLIAM G. HAINSWORTH, HEREBY CERTIFY:

1] That I am a geologist residing at 3473 Capilano Road, North Vancouver, British Columbia.

2] That I am a graduate of the University of Western Ontario, London, Ontario with a B.Sc. degree and am a registered member of the Association of Professional Engineers of the Province of British Columbia.

3] That I have practiced my profession for twenty-three years.

4] That I have no financial interest, either direct or indirect, in the subject properties, in the securities of Tintina Silver Mines Ltd, nor in that of any of its affiliates and that I do not expect to obtain any such interest.

5] That the information contained in this report is based on my personal knowledge of the property during residency from February 1962 until July 1962 and evaluation of all data from various sources pertaining to the property.

Vancouver, British Columbia, November 8, 1973

Wm. G. Hainsworth, P. Eng.
Consulting Geologist