CORANEX LIMITED

GEOCHEMISTRY OF CUB CREEK PROSPECT
YUKON TERRITORY

J. R. Woodcock
Vancouver, British Columbia

August, 1967

This report has been examined by
the Geological Evaluation Unit.
Approved as to technical worth by:

[Signature]
REIDENT GEOLOGIST

Approved as to cost in the amount of $9,255.35

[Signature]

Accepted as exploration work
under Section 33(4), Yukon Quartz
Mineral Act

[Signature]
MR. G. A. McIntyre
MINING RECORDER
WHITEHORSE MINING DISTRICT

Report on Geochemistry of Cub Creek Prospect
Coraxex Limited
by J. R. Woodcock - August, 1967

On the recommendation of the Resident Geologist and the Mining Inspector I hereby authorize you to accept this report as representation work under Section 53 (4) of the Yukon Quartz Mining Act to the value of Nine Hundred and Twenty Eight Dollars and Thirty Five Cents ($928.35).

James Smith,
Commissioner.

cc: Chief, Resource Management Division
Attention: Geological Evaluation Unit
Central Mining Records - Whitehorse
Resident Geologist
TABLE OF CONTENTS

Location	1
Claims and Ownership	1
Exploration Work	1
Geology	4
Glacial History	5
Geochemistry	6
Conclusions	7
Recommendations	9
Appendix (geochemical procedure)	20

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Index Map</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Cliffs Group</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Cub Creek Geochemistry (threshold values)</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Silt Geochemistry (total zinc)</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>" (total copper)</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>" (heavy metals)</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>" (total lead)</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Soil Geochemistry (total zinc)</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>" (total copper)</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>" (mercury)</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>Line 20S — Mercury in Soil</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>Line 24S — Mercury in Soil</td>
<td>19</td>
</tr>
</tbody>
</table>
LOCATION

Several large blocks of sulphide float occur in Cub Creek six miles southwest of Mile 1043 on the Alaska Highway, Yukon Territory. The closest settlement, Haines Junction, is at Mile 1015 on the Alaska Highway and 116 miles by road from the port of Haines in Alaska. The sulphide float lies along the southwest side of the Shakwak valley at an elevation of 4400 feet. It is at latitude 60º55'N, longitude 138º13'W on Map Sheet 115B-16.

A bulldozer road about ten miles long connects the property with the pipeline road southwest of the highway. Both the bulldozer road and the pipeline road are in disrepair.

CLAIMS and OWNERSHIP

In 1965 and 1966 Coranex Limited acquired 58 claims (Cub No.'s 1 to 32 and Tel No.'s 1 to 26 inclusive). The claims covered the area of sulphide float and geophysical anomalies. The accompanying claim map shows the various claims and their tag numbers. The following list gives the dates that the claims have lapsed or will lapse:

October 23, 1966 - Cub No.'s 1 to 12 inclusive
March 31, 1967 - Tel " 1 to 8 inclusive, Tel 14, Tel 16
June 17, 1967 - Tel " 24 to 26 inclusive
September 17, 1967 - Cub " 25, 27, 29, 31
October 23, 1967 - Cub " 13, 14, 15, 17, 19, 21, 23, 24
March 31, 1968 - Tel " 9 to 13 inclusive, Tel 15
June 17, 1968 - Tel " 17 to 23 inclusive
September 17, 1968 - Cub 30
September 17, 1969 - Cub No.'s 26, 28, 32
October 23, 1969 - Cub " 16, 18, 20, 22

This geochemical report should constitute one year of assessment work for nine claims and will be applied to the following claims: Cub 14, 17, 19, 21, 27, 29 and 30; and Tel 12, and Tel 13. If this assessment work is accepted then these nine claims will have their assessment due date extended by one year beyond that listed above.

EXPLORATION WORK

Prospectors working for the Gaymont Prospecting Syndicate discovered considerable sulphide float in what they called a terminal moraine in 1955. Prospecting up Cub Creek and around the glacier at the head of Cub Creek failed to locate additional float or the source of the known float.
In 1958, Dr. Clark, Geophysical Consultant, did a resistivity survey uphill from the sulphide float and extended this survey over the so-called moraine into the cirque at the head of Cub Creek. He discovered one zone of discontinuous conductors about 1500 feet uphill from the sulphide float. Three drill holes in the conductive area failed to reach bedrock. Hole #1, 124 feet long; hole #2, 110 feet long; and hole #3, 120 feet long all encountered sand, clay, and coarse gravel or moraine material.

In 1958 prospectors discovered some copper mineralization in a cliff two miles upstream from the "terminal moraine". Dr. Hans Froberg, director of the prospecting syndicate, concluded that this was the source of the sulphide float. Electromagnetic profiles run across the mineralized area failed to locate a conductor.

In 1962 (?) Canex Aerial Explorations Limited staked the ground. Hunting Survey Corp. Ltd. did a Turam survey to confirm the resistivity anomalies obtained by Dr. Clark. The survey showed a zone of discontinuous conductors co-extensive with Dr. Clark's conductor zone but apparently extending a little further southeasterly over an area of sheared altered and rusty basaltic rocks. Two vertical churn drill holes, approximately 190 feet deep, placed in this highly fractured rock did not encounter massive sulphides. Ray McKamy, scout for Canex, reported that the cuttings contained some disseminated native copper.

In 1964 Joe Montgomery, working for Meridian Syndicate, re-staked the ground. The Syndicate did no work and the claims lapsed in July, 1965.

In 1965 and 1966 exploration crews staked 58 claims for Coranex Limited, covering the zone of conductors and the area of sulphide float. A geophysical survey done for Coranex Limited by Harold O. Seigel and Associates Limited and interpreted by Dr. Bosschart of that Company used the Turam electromagnetic system with a horizontal loop rather than a long wire. This survey eliminated the prior anomalies obtained by the resistivity survey of Dr. Clark and the Turam survey of Huntex Limited. However a short conductor of good conductivity was located 2000 feet southeast of the sulphide float.

This small conductor is on glacial strike along the Shakwak Valley and is practically in the location suggested by the writer as a source of the float. The geochemistry described in this report was done in an attempt to gain more positive information on the source of the float.

GEOLOGY

The Shakwak Valley, with a major regional fault lying along its southwest side separates the rugged St. Elias Mountains on the southwest from the relatively mature topography of the Yukon Plateau to the northeast. The Kluane Ranges, adjacent to the Shakwak Valley, form the frontal ranges of the St. Elias Mountains.

The sulphide float at Cub Creek, carrying economic values in copper and zinc, lies in a zone of volcanic rocks belonging to the Triassic and Jurassic ages. These have been mapped by Wheeler as "saussuritized.
andesite and basalt, flows, pillow lava and volcanic breccia". The same horizon has been called the Mush Lake Group by Kindle (1953) and described as "andesite, basalt, rhyolite, volcanic breccia, tuff, argillite, limestone". It is this horizon that contains the numerous copper showings in the vicinity of Mush Lake and Kathleen Lake.

The float on Cub Creek lies between the main fault of the Shakwak Valley and a southwesterly-dipping thrust fault which separates the Mesozoic volcanic rocks from Paleozoic sedimentary rocks. The intense shearing in the basaltic rocks along Telluride Creek is probably due to their close proximity to the Shakwak fault. The intense shearing in the basaltic rocks in the vicinity of the Canex diamond drill hole and in the anhydrite outcrops about one-half mile to the southeast of the sulphide float might be related to the southwesterly-dipping thrust fault.

Although some basalt, both unaltered and highly sheared, crops out in the creek about 1500 feet southwest of the electromagnetic conductor, there are no outcrops in the vicinity of the conductor or in the vicinity of the sulphide float. Geophysical work indicates about 200 feet of overburden covering the conductor.

GLACIAL HISTORY

During the glacial advances of the Pleistocene, large quantities of ice accumulated in the St. Elias Mountains. Most of this flowed southwesterly into the Pacific Ocean but a large part of it also flowed north-easterly through passes into the Shakwak Valley. Valley glaciers coalesced in the Shakwak Valley and flowed northwesterly along the valley to join large glaciers coming down the valleys of the Donjek River and the White River. This large compound glacier terminated in the Wellesley Basin near Snag, Yukon Territory. Vast quantities of glacial outwash and debris were dumped into this basin. The ice has receded considerably since the Pleistocene and although it now flows for many miles down some of the major valleys, it does not reach the Shakwak Valley.

In addition to the present day large valley glaciers, the high cirques within all the mountain ranges of the St. Elias Range have small cirque glaciers. Such a cirque glacier, now completely gone, occupied the basin at the very head of Telluride Creek and probably supplied debris to the area subsequent to the glaciation by the Shakwak Valley glacier. This debris would travel in an easterly direction to be dumped onto the northwestern part of our claim group. Such a cirque glacier also occupies the basin at the head of Cub Creek.

Very conspicuous rock glaciers are found along the various mountain ranges. Some of these are still active but many of them are stagnant. Each of the rock glaciers must have a source area for the angular blocks of rock. In most cases the source is the terminal moraine in the cirque glaciers, in some cases it is merely talus at the foot of cliffs. The so-called moraine occurring along Cub Creek and terminating in the vicinity of the sulphide float is possibly a rock glacier. It overlies debris supplied to the claim group by the Shakwak Valley glacier and also by the cirque glacier at the head of Telluride Creek.

The glacial history of the Cub Creek claim block is very important...
in determining the source of the sulphide float. If the float was brought to its position by the Shakwak Valley glacier its source would be to the southeast; if it came from the cirque at the head of Telluride Creek its source would be to the west; and if it came from the Cub Creek rock glacier its source would be to the southwest.

Most of the sulphide float lies in the bed of Cub Creek and could have been residually concentrated from debris supplied by either of the three sources. However, one boulder sticks out of the bank above the creek and the bank at this particular locality appears to be a continuation of the main valley fill above Telluride Creek rather than part of the rock glacier of Cub Creek. The writer suggested that the sulphide float possibly lies below the Cub Creek rock glacier and within debris supplied by the Shakwak Valley glacier. The geophysical survey for Coranex Limited was done mainly to test the source area to the southeast of the sulphide float.

GEOCHEMISTRY

Silts (Cu, Zn, THM)

Detailed silt sampling was done along the upper three branches of Telluride Creek; these include the uppermost part of Telluride Creek, Cub Creek, and the stream draining the sheared area near the Canex drill hole. In addition single samples were taken from three other tributaries of Telluride Creek to the southeast of the area of interest.

The frequency distribution curve for the total copper within silts reveals that the threshold value for anomalous conditions of copper is about 115 ppm. A perusal of the map with the copper values reveals that there were no anomalous silts.

The frequency distribution curve for total zinc in silts reveals the threshold value of about 200 ppm. A perusal of the map of zinc and silts reveals that the uppermost branch of Telluride Creek is slightly anomalous throughout most of its length and that the numerous small tributaries at its head are also slightly anomalous. The debris within the stream bed has a large portion of black slate which may be the source of the zinc. The talus and moraine material at the head of the creek where it splits into numerous little tributaries consists mainly of black slates, however there is also abundant buff-weathering carbonatized rock, possibly originally an andesite intrusive or extrusive. There is also some float of anhydrite. Grab samples from the talus and moraine material of these three rock types were taken and were analyzed for copper and zinc and the following results show that source rock was not found:

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Copper (ppm)</th>
<th>Zinc (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rusty carbonatized rock</td>
<td>36</td>
<td>64</td>
</tr>
<tr>
<td>limy black graphitic slate</td>
<td>16</td>
<td>38</td>
</tr>
<tr>
<td>banded anhydrite</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>black pyritic slate</td>
<td>73</td>
<td>92</td>
</tr>
</tbody>
</table>

In addition to the anomalous creek just mentioned one might note the small rivulet on top of the Cub Creek glacier. This small rivulet is also anomalous in zinc.
The map of cold extractable heavy metals in silts reveals no outstanding anomalies. However the stream forming the head of Telluride Creek has slightly higher average values than do any of the other streams.

Only a few of the silts were run for total lead. The map of the values indicates one anomalous creek. This is a creek about a mile and one-half east of Cub Creek. The anomaly was not investigated and no explanation is offered.

Soil Geochemistry (Zn, Cu, Hg)

The frequency distribution curves for total zinc and copper in soil indicate threshold values of 170 ppm for zinc and 100 ppm for copper. The map of the soil results indicates that there were no anomalous values for zinc and only one anomalous value for copper. This anomalous value for copper (125 ppm) is from a sample that was probably on the Cub Creek rock glacier. The mere fact that it was on glacial strike with the electromagnetic conductor is just coincidental and of no consequence.

Mercury in Soil

The published literature indicates that massive pyrite deposits carrying zinc and copper generally have associated anomalous mercury values and that the soil above these deposits will often yield a mercury anomaly. The literature also indicates that the mercury probably rises through the soil in the form of vapour. Whether or not the mercury vapour could rise through 200 feet of overburden was not known; whether or not this could have taken place before these deep glacial deposits became permanently frozen; or whether or not a rise in vapour could take place through the frozen overburden is not known. However the writer decided to test two soil profiles across the electromagnetic conductor for mercury with the idea that positive results would be useful but negative results would mean nothing.

The mercury results are shown on the accompanying map (figure 10). In order to smooth out the irregularities and get a better picture, the average values for sites halfway between sample sites were estimated and drawn on the map. Profiles for mercury values along lines 20S and 24S (figures 11 and 12) are based mainly on the estimated values between sample sites.

The profiles show a definite anomaly along the west side of the conductor, a slight anomaly along the east side of the conductor, and a narrow low over top of the conductor.

CONCLUSIONS

The silt sampling shows no anomaly for copper or zinc in Cub Creek. This confirms the results of detailed prospecting which revealed no additional sulphide float above the discovery site. It also supports the theory that the Cub Creek rock glacier or moraine is not the source of the sulphide float that has concentrated in the creek bed over a limited length of the creek (Cub Creek is superimposed on the rock glacier throughout most of its length).
The silt sampling also reveals slightly anomalous zinc values along the stream forming the head of Telluride Creek. There are no corresponding copper anomalies. More detailed sampling of the black slates would probably reveal an horizon anomalous in zinc.

The soil samples revealed no copper or zinc anomalies. This cannot be used as negative criteria because it is doubtful that an anomaly would be formed by the sulphide float scattered throughout the moraine and probably occurring largely near bedrock.

The mercury geochemistry yielded encouraging but somewhat puzzling results. There is a low over the conductor, but a good high along the west (or up dip) side of the conductor and a small anomaly along the east side of the conductor.

In a publication on mercury geochemistry over the West Shasta massive sulphide deposits, Friedrich and Hawkes* give mercury values for some core from a drill hole that passed through the rhyolite host rock, some massive sulphides and some adjacent zones with pyrite veinlets. These are as follows:

<table>
<thead>
<tr>
<th>Drill Footage:</th>
<th>Rock Type</th>
<th>Mercury (ppb)</th>
<th>Copper (ppm)</th>
<th>Zinc (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.5'</td>
<td>rhyolite tuff</td>
<td>85</td>
<td>50</td>
<td>< 200</td>
</tr>
<tr>
<td>100' - 120'</td>
<td>rhyolite</td>
<td>25</td>
<td>20</td>
<td>< 200</td>
</tr>
<tr>
<td>121'</td>
<td>rhyolite tuff</td>
<td>130</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>180'</td>
<td>pyrite veinlets</td>
<td>1300</td>
<td>50</td>
<td>< 200</td>
</tr>
<tr>
<td>200' - 220'</td>
<td>rhyolite tuff</td>
<td>55</td>
<td>70</td>
<td>< 200</td>
</tr>
<tr>
<td>252' - 254'</td>
<td>massive sulphide</td>
<td>620</td>
<td>>10,000</td>
<td>>10,000</td>
</tr>
<tr>
<td>400'</td>
<td>pyrite veinlets</td>
<td>1210</td>
<td>100</td>
<td>< 200</td>
</tr>
</tbody>
</table>

Thus the barren pyrite veinlets had more mercury than the massive copper-zinc ore.

Some similar explanation may be forthcoming for the puzzling mercury profile at Cub Creek. The important fact is that there is a mercury anomaly associated with the Cub Creek electromagnetic conductor.

RECOMMENDATIONS

The geochemistry results support the writer's thesis that the sulphide float came from the southeast. The mercury geochemistry indicates that the electromagnetic conductor is a legitimate anomaly.

The conductor should be drilled.

J. R. Woodcock

August 1967
CUB CREEK GEOCHEMISTRY
(THRESHOLD VALUES)

Figure 3
ANALYTICAL METHODS USED IN GEOCHEMICAL ANALYSIS FOR COLD EXTRACTABLE "Total Heavy Metals" IN SILT AND SOIL

METHOD

(1) 0.50 gram dried -80 mesh sample
(2) Buffer solution at pH 8.5
Reagents: Ammonium citrate
 Hydroxylamine hydrochloride
 Ammonium hydroxide
(3) Dithizone-benzene solution at 0.001% W/V concentration
(4) The concentration of metals is estimated by using the following formula:

\[
\frac{1}{\text{wt. of sample}} \times \frac{\text{ml. of dithizone to reach the end point}}{\text{ml. of buffer}} = \text{Parts per million (ppm)}
\]

REFERENCES

(1) A. Y. SMITH: Field and laboratory methods used by the Geological Survey of Canada in geochemical surveys No. 5 Cold Extractable "Heavy Metal" in soil and alluvium Paper 65-49
ANALYTICAL METHOD USED IN GEOCHEMICAL ANALYSIS FOR ACID SOLUBLE ZINC

METHOD:

(1) Digestion
 (a) 0.25 grams of -30 mesh dried sample
 (b) Nitric acid and perchloric acid digestion in heated sand bath

(2) Zinc Analysis:
 (a) Buffer solution at pH 5.0
 Reagents: Sodium thiosulphate
 Sodium acetate
 Acetic acid
 (b) Dithizone - carbon tetrachloride solution at 0.001% W/V concentration.
 (c) The zinc concentration is estimated by colourically comparing a set of known zinc standards.

REFERENCES:

(1) M. A. Gilbert: Field and laboratory methods used by the Geological Survey of Canada in geochemical surveys No. 1. Laboratory methods for determining copper, zinc and lead. Paper 59-5.

(2) Sandell: Colourimetric metal analysis - 3rd. ed.

ANALYTICAL METHODS USED IN GEOCHEMICAL ANALYSIS FOR ACID SOLUBLE COPPER

METHOD

(1) DIGESTION
 (a) 0.25 gram of -80 mesh sample
 (b) Perchloric acid digestion in sand bath

(2) Copper Analysis
 (a) Buffer solution at pH 6.5
 Reagents: Sodium acetate
 Sodium tartrate
 Hydroxylamine hydrochloride
 (b) 2, 2' - biquinoline in iso-amyl alcohol
 (c) A Fisher Electrophotometer II for reading copper concentration.

REFERENCES

(1) SANDELL: Colourimetric Metal Analyses - 3rd. ed.
(2) FHJGL: Spot tests in inorganic analysis.
ANALYTICAL METHODS USED IN GEOCHEMICAL ANALYSIS FOR ACID SOLUBLE LEAD

METHOD

(1) **DIGESTION**

(a) 0.25 grams of -80 mesh dried sample

(b) Nitric acid and perchloric acid digestion in heated sand bath

(2) **Lead Analysis:**

(a) Buffer solution at pH 8.5
 Reagents: Ammonium citrate
 Potassium cyanide
 Hydroxylamine hydrochloride
 Ammonium hydroxide
 Thymol blue solution

(b) Dithizone-carbon tetrachloride solution at 0.0015% W/V concentration

(c) The concentration of lead is estimated colourimetrically by comparing a set of known concentration of lead.

REFERENCES:

(1) M. A. Gilbert: Field and Laboratory Methods used by the Geological Survey of Canada in geochemical surveys. No. 1 Laboratory Methods for determining copper, zinc and lead. Paper 59-3

(2) Sandell: Colourimetric metal analysis - 3rd. ed.

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>Hg ppb</th>
<th>Sample Number</th>
<th>Hg ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC 2250</td>
<td>263</td>
<td>CC 2269</td>
<td>157</td>
</tr>
<tr>
<td>1</td>
<td>138</td>
<td>70</td>
<td>203</td>
</tr>
<tr>
<td>2</td>
<td>185</td>
<td>1</td>
<td>511</td>
</tr>
<tr>
<td>3</td>
<td>248</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>116</td>
<td>4</td>
<td>123</td>
</tr>
<tr>
<td>6</td>
<td>183</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>191</td>
<td>6</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>7</td>
<td>183</td>
</tr>
<tr>
<td>9</td>
<td>172</td>
<td>8</td>
<td>94</td>
</tr>
<tr>
<td>60</td>
<td>102</td>
<td>9</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>54</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>243</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I, J. R. Woodcock, do solemnly declare that the following expenditures were incurred for a geochemical survey of part of the Cub and the Tel claim groups situated twenty-five miles northwest of Haines Junction in the Whitehorse Mining District:

Geochemical work as follows:

Preparation & digestion of 65 silts and 78 soils @ 75¢ per sample $107.25

Preparation & digestion of 4 rock samples @ $1.25 per sample 5.00

140 analyses for Cu, Zn @ $1.00 140.00

65 " " ThM @ 50¢ 32.50

22 " " Pb @ 50¢ 11.00

32 " " Hg @ $2.00 64.00

Rental of field vehicle 130.60

Wages - J. R. Woodcock - 5 days @ $50 250.00

Wages - C. Campbell - 4 days @ $27 108.00

Misc. expenses (food, accommodation, typing, etc.) 80.00

$ 928.35

Sworn to and subscribed to
at Vancouver, British Columbia

This 1st day of September, 1967

[Signature]

Applicant
Report Number 271 Issued on August 21, 1967

Summary

Date: August 22, 1967

Project: 210.03

Period Covered:

Progress Billing:

Shipping Report:

Work Report: 271

Fed. Sales Tax: N/A

Ont. Sales Tax: N/A

Terms: Net

Authority: Mr. C. Chun

To: Geochemical Analysis:

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 Samples analysed for Mercury</td>
<td></td>
<td>$2.00</td>
<td>$64.00</td>
</tr>
</tbody>
</table>

Report Number 271 issued on August 21, 1967

Paid: 4/7/67

Invoice No: 2413