MINERAL MOUNTAIN MINING CO. LTD.

10, 11, AND 12 CLAIRNS
193-E-3, 52-2-W, 132-62

Lathamree K.E. Yukon

CARRY ON A.G.A. GEOLOGICAL AND GEOCHEMICAL WORK

MARCH 21 - NOVEMBER 30, 1966

By

VANCOUVER, B.C.

This report has been examined by the Geological Evaluation Unit. Approved as to technical worth by:

REPRESENTATIVE.

Approved as to cost in the amount of: $ 6,000.00

The following work was done under Section 306, Yukon Quartz Mining Act:

COMMISSIONER OF YUKON
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. PROPERTY</td>
<td>1</td>
</tr>
<tr>
<td>3. HISTORY</td>
<td>2</td>
</tr>
<tr>
<td>4. REGIONAL GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>5. AIRBORNE ELECTROMAGNETIC SURVEY</td>
<td>4</td>
</tr>
<tr>
<td>6. GEOLOGICAL WORK</td>
<td>5</td>
</tr>
<tr>
<td>7. GEOCHEMICAL RECONNOITRINGE</td>
<td>6</td>
</tr>
<tr>
<td>8. PERSONNEL AND COSTS</td>
<td>7</td>
</tr>
<tr>
<td>9. SUMMARY</td>
<td>8</td>
</tr>
<tr>
<td>10. COST OF PROPOSED PROGRAM</td>
<td>9</td>
</tr>
<tr>
<td>11. RECOMMENDATIONS</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>List of Personnel</td>
</tr>
<tr>
<td>Appendix B</td>
<td>1966 Costs</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

- **Figure 1**: Claim map, 1" = 1500'
- **Figure 1a**: Bulldozer work, 1" = 1500'
- **Figure 2**: Surface Geology, 1" = 1500'
- **Figure 3**: Copper in soils, 1" = 500'
- **Figure 4**: Lead in soils, 1" = 500'
- **Figure 5**: Lime in soils, 1" = 500'
- **Figure 6**: Soil sample locations, 1" = 500'
- **Figure 7**: Claim location, 1" = 4 miles
MINERAL MOUNTAIN MINING CO., LTD.

REPORT ON 1966 FIELDWORK

on the
20, 65, and 75 GROUPS
Y CREEK GROUP, WHITEHORSE M.P., Y.T.

DECEMBER 29, 1966

1. INTRODUCTION

The Jo group was examined by the writer in early spring 1966 and an airborne electromagnetic survey by the Geo Cal method was chosen as the most rapid method to determine at an early date whether electrically conductive zones which could reflect the presence of sulphide bodies existed on this property.

Initially, lines were cut by bulldozer to identify the claims on the ground. The 64 and 65 claims were staked when further surveying showed the presence of open ground.

In view transportation did not materialize during the summer, helicopter transportation remained a necessity and the owners program was kept to a minimum.

Geological mapping and geochemical sampling of a reconnaissance nature were carried out, the latter being confined to areas drawing conductors located on the ground.

This preliminary work did, as yet, not provide definite encouragement and more detailed geological, geochemical and geophysical work is recommended, especially as there are indications that the granodiorite in the area may form relatively thin sill-like bodies overlying the favorable schists containing sulphide bodies elsewhere in the district.

Personal involved in the 1966 field program is listed on Appendix A and costs are recorded on Appendix B.

2. PROPERTY

The property consists of the following claim groups (figures 7 and 1):

Jo 64, 65, 66, 68, 70 & 72
Jo 67 to 68
Ed 17 - 20, 22 & 23 fraction
Fb 1 - 8

20 claims:

Grand Total: 20

Values:

$3331, $3332, $3333, $3334, $3335, $3336, $3337, $3338

This is a total of 20 claims.
The following claims are on ground covered by previous claims and will be allowed to lapse:

Jo 63, 67, 69, 71 and Ed 21, a total of 5 claims.

Recording dates are as follows:

<table>
<thead>
<tr>
<th>Claim</th>
<th>Recording Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jo 17 - 22</td>
<td>December 7th, 1969</td>
</tr>
<tr>
<td>Fl 1 - 8</td>
<td>April 25th, 1966</td>
</tr>
<tr>
<td>Ed 23 fraction</td>
<td>November 14th, 1966</td>
</tr>
</tbody>
</table>

The property is located on claim sheet 143-E-2, at Latitude 62°49'N and Longitude 132°42'W, East of Swan Lakes. It is accessible by a 25 mile long winter road from the Fally River ferry, which is located about 250 road miles from either Watson Lake or Whitehorse.

The road from the ferry to Swan Lakes is for the most part unusable in summer, but some further improvements are required. From Swan Lakes, a shorter road can be driven up Moon Creek valley, in the upper parts of which the claims are situated.

3. HISTORY

The Jo claims were staked South of, and immediately adjoining, the Cub Group of claims of Dynasty, shortly after the latter organization had made a major discovery in this area in the fall of 1963.

The first discovery in the area had been made by Prospector's Airways on Vanguard Creek in the fall of 1952. Further exploration in the area started in 1962-1963, when Kerr Addison Mines acquired ground, followed by Dynasty Explorations in 1964.

There are now well over 30 million tons of about 10% combined zinc-lead-copper ore with 1-2 oz/t silver outlined in about 3 bodies of significant size in the area, which now rates as a major base metal camp.

No work has been carried out before 1968 on the ground now covered by Mineral Mountain Mining Co. Ltd.'s Jo claims except some reconnaissance prospecting and possibly minor airborne magnetic work by the Dynasty organization in 1964-1965.
4. REGIONAL GEOLOGY

Only 1" = 4 mile regional reconnaissance mapping by the G.S.C. is available, mostly obtained by mapping by helicopter. (Figure 7)

The Vangoia Creek area is underlain by a NW trending anticline of quartz-sericite schists with varying amounts of chloritic schists, limy schists, graphitic schists and occasional hornfelses, generally referred to by the G.S.C. as Unit 7.

These formations are believed to be of Mississippian age, and are underlain by a series of andesitic volcanics associated with minor argillites and quartzites (G.S.C. Unit 8) which, in turn, are covered by a series of argillaceous quartzites and conglomerates (G.S.C. Unit 9). Of the latter, only a few remnants remain in the area.

The older Devonian, comprising shales, quartzites and limestones, appears to the Northeast, as shown by the attached 1" = 4 mile map.

Intrusives of varying composition and age occur in the district; a granodioritic character predominates, and their age, based on isotope dating, is believed to lie in the Cretaceous to Tertiary range.

Tertiary basic flows occur both to the NE and the SW of the general district, but none are exposed on the map area covered by the attached location map.

Strong faulting took place in the Cretaceous and Tertiary with good evidence of a total right-lateral movement of about 250 miles along the Tintina Trench (G.S.C. Paper 63-2, p. 57).

Significant NE trending faults are indicated across the NW striking anticlinal belt.

The presently known sulphide bodies, essentially pyritic-pyrrhotite bodies carrying significant base-metal values in something like 30% of their mass, occur in the schists and are generally conformable to the bedding.

Personal observations of various occurrences east of the Tintina Trench have indicated to the writer that recumbent folding
and lubricated structures are present and may be important factors in determining the shape of the above-mentioned sulphide masses.

These considerations on age of the formations, on type of ore and on the tectonic style suggest considerable remobilization of sulphides, regardless of their first mode of deposition.

Field evidence also suggests that sheared contacts of intrusives, breccia zones (possible breccia pipes), shears, shear-zone intersections and possibly other geological features could be significant controls of cross-cutting ore deposits of either the high grade bonanza type or of the large low-grade type in this area.

5. AIRBORNE ELECTROMAGNETIC SURVEY

The Geo Cal method is based on the observation that a helicopter equipped with metal rotor blades generates a primary electromagnetic field of approximately 100 c.c.p.s. with an effective radius of some 130° when the blades are rotating at their normal speed of 220 m.p.h.

When a helicopter with metal blades flies at an elevation of 50° to 100° above a conducting body of some size, a secondary electromagnetic field is induced, and the resultant field shows a significant distortion.

This resultant field can be analyzed with a search coil with a vertical axis held by an operator in the helicopter.

The audio amplifier attached to the search coil is tuned to a signal of 100 c.c.p.s. and has a gain switch and a feed back squelcher switch.

The former is regulated to produce a barely audible signal when the coil is held with its axis vertical, and the latter is adjusted so that only the 100 c.c.p.s. signal goes through the amplifier. When the aircraft flies close to the terrain in the absence of a conducting zone, the field signal will have minimum amplitude. If, under these conditions, a conducting zone is traversed, the signal strength will markedly increase in amplitude. Under favorable conditions, the orientation of the resultant field can be analyzed by having the helicopter hover over the conducting zone.
By landing, the conducting zones so discovered can be traversed on the ground with the same receiver coil, using a power-pack transmitter.

Over mineralized ground, the survey was flown along east-west lines about 130° apart, using an enlarged airphotograph to spot the conducting zones, after location lines and some boundary lines had been cut by helicopters to identify the claims on the ground. (Figure 1a).

The results of this survey are plotted on figure 2; eleven conducting zones were located from the air, two of which were located on the ground by landing the helicopter and surveying with the sharp electrode. These exhibited dip angles of 8° both left and right.

The other conductors were not accessible by helicopter.

6. GEOLOGICAL SURVEY

Reconnaissance mapping and geochemical prospecting was carried out between August 9th and 17th, 1966 by F.A. Thode, K. Turnbull and Mr. J.F. Koster van Graaff, with fill-in work by R.S. Aikins in late October 1966.

The initial tape and compass survey was improved upon by transit-work and several stations were established, tying in the location lines and claimsheets. This provided a network to tie in outcrops, topographical features and soil sample stations.

Special emphasis was placed on the areas where conducting zones had been located on the ground.

The higher ridges generally offer numerous well exposed outcrops while the flanking slopes and valley bottoms are obscured by overburden and vegetation. Glacial deposits do not appear to reach any appreciable thickness in this area although several small eskers occur along the valley bottom. Figure 2 indicates the major outcrops occurring within the property boundary and the location of an exposure northeast of the property where an intercalated sequence of schists and granitic rocks was mapped.

The drainage is from the North and the South into Moose Creek which cuts the property from East to West through the small lake in the NW part of the property.
Further detailed mapping will require cutting shallow trenches by bulldozer to define the boundaries of the granodiorite outcrops and to determine how much schist outcrop is present on the property, especially in the lower lying areas.

From observations on adjacent properties it appears that the granodiorite may form sill-like bodies possibly no thicker than 30', and some of the low intrusive bodies may actually represent low domes in these sill-like bodies.

The conductive zones could thus, in some cases, reflect the presence of conductive formations lying underneath a thin granodiorite sill.

This is at present considered as a working hypothesis which cannot be discarded and which requires further field investigation.

The significant feature about the property is that the favorable schist assemblages containing the sulphides are hosted between Faro and Twin strikes into the Moose Creek area and that a pronounced change of strike in this belt, from about 140° to about 200° occurs near the west boundary of the 1C Group. (Figure 7).

7. GEOCHEMICAL RECONNAISSANCE

Forty-four soil samples were taken in areas draining the conductors. These samples were assayed by Rio Altona Ltd. Due to confusion between similar sample tag numbers used by two different companies, no lead assays were run on 14 of these samples and it has not been possible to rectify this oversight subsequently. (Figure 4).

The geochemical results, recorded on figures 5, 4, 3 and 6 show:

- Copper: low background values; with 4 values of 25 or better (background is usually 0 - 25 ppm)
- Lead: all nil (normal background in schists: 0 - 25 ppm)
- Zinc: all but 2 show background values of less than 75 ppm.

The absence of lead suggests strongly that no schists have outcrops in the area draining into the sample areas.

The slightly higher than background values of copper suggest granodiorite.

No conclusion can be drawn from the zinc values.
Neither geological nor geochemical reconnaissance thus provides a satisfactory explanation for the conducting zones.

The hypothesis that the granodiorite forms thin sills with conducting formations lying below them appears therefore quite plausible, especially as on nearby ground, field observations suggest that the granodiorite does form bodies of this type.

There is no suggestion that the granodiorite has been mechanically thrust over the schists, and if it is assumed that sulphide bodies in the area were formed after intrusion of the granodiorite (which is not certain), one may expect alteration of any thin "sills" overlying sulphide bodies.

Careful geological mapping of the property may elucidate this problem and this mapping should cover the whole property, using tape and compass and existing reference points and should preferably be proceeded by additional bulldozer work. This is especially important as about half of the property is covered by an old burn with heavy windfalls.

Mapping should be accompanied by additional geochemical reconnaissance along the bulldozer trenches to be cut over the as yet unexplored claims.

8. PERSONNEL AND COST:

A list of personnel engaged in work on the Jc and 2d claims is attached to this report as Appendix A.

A cost breakdown is attached as Appendix B.

For work purposes, the claims have been divided into two groups:

1. Staked before airborne survey
 16 Jc claims (64 - 66, 68, 70, 72 and 87 - 96)

2. Staked during and after airborne survey
 Ed 17 - 20, 22 and 23 fractions; 8 claims
 Fb 1 - 8; 8 claims

This is a total of 14 claims.
Costs applicable to each group are as follows:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>1. Staking</td>
<td>--</td>
<td>$4,644.30 *</td>
</tr>
<tr>
<td>2. Limnecut for airborne survey</td>
<td>$1,552.38</td>
<td>--</td>
</tr>
<tr>
<td>3. Airborne survey</td>
<td>$1,990.25</td>
<td>--</td>
</tr>
</tbody>
</table>
| 4. Geological & Geochemical
Reconnaissance | 100.00 | 1,011.69 |
| 5. Surveying, limnecutting and soil sampling | 223.10 | 2,830.00 |
| Total | $3,845.73 | $3,856.19 |

* Note: not usable as representation work.

This is a total of $7,701.92, of which $6,837.42 is classed as representation work. All disbursments have been made by the writer on behalf of Mineral Mountain Mining Co. Ltd.

9. SUMMARY

The Mineral Mountain ground lies about on strike with the trend of the sulphide bodies between Fare and Lion.

Near the west boundary of the group a significant change of strike of the schist occurs from about 10E to 80E; proximity to the granodiorite may be favorable factor.

Whether this property is partly underlain by the favorable schists depends on two factors:

1. The amount of schist outcrop
2. Whether or not the granodiorite forms one or more relatively thin (say 20' - 100') sills overlying favorable schists.

If not, the conducting zones must be regarded as due to spurious conductivity within a large mass of granodiorite.

This problem may be clarified by the following program:

Cut about 5 line miles of shallow (6' - 1') trenches, and do geological mapping and soil sampling along these "trenches".

Follow-up by some detailed limnecutting, geophysics and perhaps drilling wherever favorable indications are obtained, like high soil sampling results, alterations in the granodiorite or direct evidence of the sill-like character of the latter.
As it is expected that all claims can be maintained in good standing until December 1968, it is recommended to do this work whenever equipment and personnel are available nearby.

It is also possible that new facts about the area in general may come to light in the meantime.

Minor drilling with a Winch-type portable drill may be considered.

10. COST OF PROPOSED PROGRAM

An estimate of the costs is as follows:

<table>
<thead>
<tr>
<th>Stage 1: continuing exploration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulldozer trenching, including ferrying</td>
<td>$1,000</td>
</tr>
<tr>
<td>and 6 miles of line, 26 hours & $36.00</td>
<td></td>
</tr>
<tr>
<td>Geological mapping, 1 man-month</td>
<td>$1,200</td>
</tr>
<tr>
<td>Soil sampling, 200 samples</td>
<td>$1,300</td>
</tr>
<tr>
<td>Geophysical follow-up, including 3 to 10 line miles of picket lines</td>
<td>$3,000</td>
</tr>
<tr>
<td>Transportation</td>
<td>$800</td>
</tr>
<tr>
<td>Contingencies, Engineering, Overhead</td>
<td>$1,400</td>
</tr>
<tr>
<td>Total</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2: continuous drilling, if successful in stage 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1200' @ $25.00 overall</td>
<td>$30,000</td>
</tr>
</tbody>
</table>

11. RECOMMENDATIONS

The potential for discovery of economic sulphide bodies on the Jo, Id and Jb claims of Mineral Mountain Mining Co. Ltd. depends on the amount of favorable schists present either in outcrop or possibly underlying part of the granodiorite if the latter does occur in sill-like bodies, as appears to be the case on nearby ground.

Work to date has consisted of initial reconnaissance on the Jo claims and more detailed work on part of the Id Group. Eleven conductive areas have been located by airborne methods, of which two have had ground-work done without much encouragement.

Additional geological mapping and geochemical reconnaissance in recommended along shallow bulldozer trenches, to fully explore this property.
It is estimated that a total expenditure of $10,000 is required for this work, which can be carried out in stages depending upon availability of men and equipment.

If drilling is warranted as a result, a minimum of $30,000 should be appropriated for a 3 to 4 hole program.

Respectfully submitted,

P.H. SEVENSM CONSULTANT LTD.

[Signature]

P.H. Sevense, Ph.D., F. Eng.
CERTIFICATE

I, PETER H. SEVUNNA, of Vancouver, B.C. do hereby certify that:

1. I am a graduate of the University of Geneva, Switzerland (Physics and Chemistry 1937; Geology and Mineralogy, 1937) where I obtained my Ph.D. in Geological and Mineralogical Sciences in 1941.

2. I am a Consulting Geological Engineer and a registered member in good standing of the Association of Professional Engineers of British Columbia and of the Association of Professional Engineers of Yukon Territory.

3. From February 1948 until December 1963 I have been engaged continuously in mining and exploration geology in the employ of Cominco Limited. As a Senior Exploration Geologist, I have worked extensively both in Eastern and Western Canada.

4. I have personally examined on several occasions the claims which are the subject of this report and have acted as a Consulting Geologist since early 1968 on the exploration program conducted by Mineral Mountain Mining Co. Ltd. on these claims.

5. I have not received, nor do I expect to receive or acquire, directly or indirectly, any interest in any of the properties or securities of Mineral Mountain Mining Co. Ltd.

Respectfully submitted,

[Signature]

P.H. Sevunna, Ph.D., P. Eng.

December 20, 1968
APPENDIX A

LIST OF FIRMS AND INDIVIDUALS ENGAGED IN WORK PROGRAMS ON JOE, ED AND PB CLAIMS FOR MINERAL MOUNTAIN MINING CO., LTD.

Road Construction & Stripping:
March 27 - April 1, 1966
Liard Construction, Whitehorse, Y.T.
Supervised by M. Cloutier of Richmond, B.C.

Airborne EM Consultants:
April 1 - 3, 1966
Geo Cal Ltd., West Vancouver, B.C.
C.R. Selmer, P. Eng., Geophysicist
I. Pavets, Operator

Geophysical Helicopter:
Bell 47G3 B-1 GP-BA3
Pilot, J. Langlois

Surveying, Tape & Compass:
March 26 - April 9, 1966
F.R. Sevenama Consultants Ltd.
M. Cloutier, Richmond, B.C.
C. Harris, Whitehorse, Y.T.
J. Lich, Ross River, Y.T.

Linecutting, Surveying:
A. MacDonald Consultants Ltd.
H. Weber, Supervision

Geochemical Sampling:
August 9 - 19, 1966
A. MacDonald Consultants Ltd.
F.R. Thomas, Field Engineer
K. Turnbull, Assistant
44 samples taken, assayed by Bio Metals

Geological Survey:
August 16 - 17, 1966
October 26, 1966
November 10 - 12, 1966
F.R. Sevenama Consultants Ltd.
Dr. A.F. Koster van Groos, Field Geologist
R.C. Alkins, Field and Office Work

Certified Correct:

[Signature]
MINERAL MOUNTAIN MINING CO. LTD.

COST BREAKDOWN OF 1966 WORK

<table>
<thead>
<tr>
<th>Type of Work</th>
<th>Cheque #</th>
<th>Paid to</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jo Claims</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lincutting, stripping, boundary location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank charges</td>
<td>EM</td>
<td>Bank of Montreal</td>
<td>$ 10.00</td>
</tr>
<tr>
<td>Supplies, transportation</td>
<td>1</td>
<td>Ross River Enterprises</td>
<td>32.60</td>
</tr>
<tr>
<td>Wages</td>
<td>3</td>
<td>J. Dick</td>
<td>16.00</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>6</td>
<td>E. Stephen (Lard Cons)</td>
<td>$40.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>7</td>
<td>Great Northern Airways</td>
<td>13.20</td>
</tr>
<tr>
<td>Surveying</td>
<td>11(part)</td>
<td>F.H. Sevenuma Cons.</td>
<td>$58.30</td>
</tr>
<tr>
<td>Wages</td>
<td>13</td>
<td>Glen Harris</td>
<td>20.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1,332.30</td>
</tr>
<tr>
<td>2. Airborne Survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicopter FAA</td>
<td>8</td>
<td>Klondike Helicopters</td>
<td>$687.00</td>
</tr>
<tr>
<td>Helicopter support LIN</td>
<td>8</td>
<td>Klondike Helicopters</td>
<td>126.00</td>
</tr>
<tr>
<td>Geophysical contractor</td>
<td>10</td>
<td>Ge Cal, Vancouver</td>
<td>464.25</td>
</tr>
<tr>
<td>Consulting fees</td>
<td>12</td>
<td>F.H. Sevenuma Cons.</td>
<td>490.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>13</td>
<td>Great Northern Airways</td>
<td>62.00</td>
</tr>
<tr>
<td>Bank service charge</td>
<td>18</td>
<td>Bank of Montreal</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1,950.00</td>
</tr>
<tr>
<td>11. Jo, Ed and Pb Claims</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Geophysical & Geochemical Reconnaissance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expenses</td>
<td>17</td>
<td>Koster van Groen</td>
<td>$ 18.75</td>
</tr>
<tr>
<td>Wages, Koster van Groen</td>
<td>19</td>
<td>Selwyn Syndicate</td>
<td>220.00</td>
</tr>
<tr>
<td>Consulting fees & expenses</td>
<td>20</td>
<td>F.H. Sevenuma Cons.</td>
<td>335.61</td>
</tr>
<tr>
<td>Bank service charge</td>
<td>21</td>
<td>Bank of Montreal</td>
<td>1.00</td>
</tr>
<tr>
<td>Transportation (jeep)</td>
<td>22</td>
<td>H. Cloutier</td>
<td>94.10</td>
</tr>
<tr>
<td>Bank service charge</td>
<td>28</td>
<td>Bank of Montreal</td>
<td>10.00</td>
</tr>
<tr>
<td>Geology & Geochemistry</td>
<td>26(part)</td>
<td>F.H. Sevenuma Cons.</td>
<td>370.83</td>
</tr>
<tr>
<td>Miscellaneous disbursements</td>
<td>57</td>
<td>F.H. Sevenuma Cons.</td>
<td>$1,144.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1,111.60</td>
</tr>
<tr>
<td>4. Surveying, Lincutting & Soil sampling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td>15</td>
<td>Klondike Helicopters</td>
<td>$162.00</td>
</tr>
<tr>
<td>Wages and expenses</td>
<td>18</td>
<td>MacDonald Cons.</td>
<td>1,513.25</td>
</tr>
<tr>
<td>Groceries</td>
<td>21</td>
<td>Ross River Enterprises</td>
<td>44.93</td>
</tr>
<tr>
<td>Geochemistry</td>
<td>23</td>
<td>MacDonald Cons.</td>
<td>335.33</td>
</tr>
<tr>
<td>Assaying</td>
<td>24</td>
<td>Rio Metals</td>
<td>58.50</td>
</tr>
<tr>
<td>Office work</td>
<td>29</td>
<td>MacDonald Cons.</td>
<td>22.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$2,223.10</td>
</tr>
<tr>
<td>III. Staking Ed and Pb Claims</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Staking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfers, Pb 1 - 8</td>
<td>2</td>
<td>M. Cloutier</td>
<td>$ 5.00</td>
</tr>
<tr>
<td>Transfers, Ed 17 - 22</td>
<td>4</td>
<td>F. Langlois</td>
<td>20.00</td>
</tr>
<tr>
<td>Recording Pb 1-8, Ed 17 - 22</td>
<td>9</td>
<td>Receiver General</td>
<td>140.00</td>
</tr>
<tr>
<td>Transfers Pb's, Ed's</td>
<td>16</td>
<td>Receiver General</td>
<td>17.00</td>
</tr>
<tr>
<td>Staking</td>
<td>21(part)</td>
<td>F.H. Sevenuma</td>
<td>250.00</td>
</tr>
<tr>
<td>Recording Ed #23 to 4 transfer</td>
<td>23</td>
<td>Receiver General</td>
<td>12.50</td>
</tr>
<tr>
<td>Staking (Ed #23)</td>
<td>26(part)</td>
<td>F.H. Sevenuma</td>
<td>$600.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$6,046.50</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>$7,501.02</td>
</tr>
</tbody>
</table>

Certified Correct: [Signature]
SURFACE GEOLOGY

-LEGEND-

Surficial Deposits
Outcrop
Granodiorite
Schist

E.M. ANOMALIES:
Airborne reconnaissance only:
Confirmed by ground survey:

MINERAL MOUNTAIN MINING CO. LTD.
JO, ED & PB CLAIMS
Whitehorse, M.D. 105 K-2
P.H. Sevensma Consultants Ltd.
Vancouver, B.C. Nov. 1966
SOIL SAMPLING

"COPPER"

LEGEND

- Inferred position of conductor
- Soil sample location
- Analysis (P.P.M.)
- Background
 - < 25
 - 25-50
 - 50-100
 - > 100

MINERAL MOUNTAIN MINING CO. LTD.

JO, ED & PB CLAIMS

Whitehorse, M.D. 105K-2

P.H. Sevenima Consultants Ltd.

715-850 W. Hastings, Vancouver Nov. 1966
SOIL SAMPLING
"LEAD"

—LEGEND—

Inferred position of conductor

Soil sample location ○
Analysis (P.P.M. Pb.)
Background < 25 ○
25-50 ○
51-100 ○
N.A. (No Assay), Tr. (Trace)
Nil (below limit of detection)

MINERAL MOUNTAIN MINING CO. LTD.
JO, ED & PB CLAIMS
Whitehorse, M.D.
105 K - 2
715-850 W. Hastings, Vancouver
Nov. 1966

FIG. 4
SOIL SAMPLING
"ZINC"

---LEGEND---
Inferred position of conductor

Soil sample location o
Analysis (P.P.M. Zn.)
Background < 75 o
75-150 o
> 150 o

MINERAL MOUNTAIN MINING CO. LTD.
JO, ED & PB CLAIMS
Whitehorse M.D. 105 K - 2
P.H. Sevensma Consultants Ltd.
715-850 W.Hastings, Vancouver Nov. 1966

FIG. 5
Inferred position of conductor

Soil sample location

MINERAL MOUNTAIN MINING CO. LTD.
JO, ED & PB CLAIMS
Whitehorse, M.D.
105 K - 2
P.H. Sevensma Consultants Ltd.
715-850 W. Hastings, Vancouver
Nov. 1966

FIG. 6
F 9, greenish grey quartzite, commonly thin-bedded; micaceous and silvery graphitic schists; and silty limestone

9b conglomerate

8, altered, dark green andesite and basalt flows and tuffs, minor sediments

7, banded quartzose granulite, green and purplish banded skarn, quartz-sericite schist, hornfels and phyllite; chlorite schist and thin altered andesite.

DEVONIAN/MISSISSIPPIAN

5,5a chert-pebble conglomerate

5b chert, shale, quartzite; minor conglomerate and limestone

5c slate, shales, sandstone, greywacke, phyllite; minor conglomerate

MISSISSIPPIAN (?)

9, 9a greenish grey quartzite, commonly thin-bedded; micaceous and silvery graphitic schists; and silty limestone

PALEOCENE

12, brown-weathering, impure sandstone

CRETACEOUS (?)

11, medium-to coarse-grained quartz monzonite and granodiorite, commonly porphyritic; minor diorite and gneiss

QUATERNARY

15, glacial and alluvial deposits

PROPERTY LOCATION AND REGIONAL GEOLOGY

Whitehorse M.D. 105 K-2

Vancouver, B.C. scale: 0 1 2 4 miles

Jan. 1967

FIG. 7